IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p511-d483196.html
   My bibliography  Save this article

Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material

Author

Listed:
  • Lukas Hegner

    (Competence Centre Thermal Energy Storage (CCTES), Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland
    Current address: ETH Zürich, 8092 Zurich, Switzerland.)

  • Stefan Krimmel

    (Competence Centre Thermal Energy Storage (CCTES), Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

  • Rebecca Ravotti

    (Competence Centre Thermal Energy Storage (CCTES), Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

  • Dominic Festini

    (Competence Centre Thermal Energy Storage (CCTES), Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

  • Jörg Worlitschek

    (Competence Centre Thermal Energy Storage (CCTES), Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

  • Anastasia Stamatiou

    (Competence Centre Thermal Energy Storage (CCTES), Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

Abstract

Latent heat storage (LHS) represents a valuable technology for the integration of intermittent renewable energy sources in existing and future energy systems. Improvements in LHS can be sought by enhancing heat transfer efficiency, compactness and diminishing the environmental impact of storage systems. In this paper, direct contact latent heat storage (DC-LHS) using esters as phase change material (PCM) is proposed as a promising compact storage technology to achieve high performance both in terms of heat transfer and sustainability. The technology allows for the heat transfer fluid (HTF) to flow directly through the PCM, forming a large amount of small droplets and thus providing a large heat exchange surface area between the two materials. At the same time, using biobased esters as PCM, gives the technology clear ecological advantages when compared to alternative types of compact energy storage. Furthermore, no complex heat transfer enhancing structures are necessary in a DC-LHS, further reducing the environmental impact and enabling very high energy densities. In this paper, the feasibility of this concept is explored for the first time by developing and testing an experimental DC-LHS device using methyl palmitate as PCM and water as HTF. The thermal performance and stability of the material combination are analysed by different melting–solidification experiments and distinctive effects are identified and comprehensively discussed for the first time. The basic concept as well as the novel material combination are validated. The study finds the critical challenges that must be overcome in order for this highly promising technology to be successfully implemented.

Suggested Citation

  • Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:511-:d:483196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    2. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    3. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    4. James A. Callow & Maureen E. Callow, 2011. "Trends in the development of environmentally friendly fouling-resistant marine coatings," Nature Communications, Nature, vol. 2(1), pages 1-10, September.
    5. Sebastian Ammann & Andreas Ammann & Rebecca Ravotti & Ludger J. Fischer & Anastasia Stamatiou & Jörg Worlitschek, 2018. "Effective Separation of a Water in Oil Emulsion from a Direct Contact Latent Heat Storage System," Energies, MDPI, vol. 11(9), pages 1-15, August.
    6. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    7. Martin, Viktoria & He, Bo & Setterwall, Fredrik, 2010. "Direct contact PCM-water cold storage," Applied Energy, Elsevier, vol. 87(8), pages 2652-2659, August.
    8. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    9. Stamatiou, Anastasia & Obermeyer, Melissa & Fischer, Ludger J. & Schuetz, Philipp & Worlitschek, Jörg, 2017. "Investigation of unbranched, saturated, carboxylic esters as phase change materials," Renewable Energy, Elsevier, vol. 108(C), pages 401-409.
    10. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Tietze & Piotr Szulc & Daniel Smykowski & Andrzej Sitka & Romuald Redzicki, 2021. "Application of Phase Change Material and Artificial Neural Networks for Smoothing of Heat Flux Fluctuations," Energies, MDPI, vol. 14(12), pages 1-17, June.
    2. Simonsen, Galina & Ravotti, Rebecca & O'Neill, Poppy & Stamatiou, Anastasia, 2023. "Biobased phase change materials in energy storage and thermal management technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    2. Sebastian Ammann & Andreas Ammann & Rebecca Ravotti & Ludger J. Fischer & Anastasia Stamatiou & Jörg Worlitschek, 2018. "Effective Separation of a Water in Oil Emulsion from a Direct Contact Latent Heat Storage System," Energies, MDPI, vol. 11(9), pages 1-15, August.
    3. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    4. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    5. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    6. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    7. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    8. Soares, N. & Gaspar, A.R. & Santos, P. & Costa, J.J., 2015. "Experimental study of the heat transfer through a vertical stack of rectangular cavities filled with phase change materials," Applied Energy, Elsevier, vol. 142(C), pages 192-205.
    9. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    10. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    11. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    12. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    13. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
    14. Yang, Kun & Zhu, Neng & Chang, Chen & Wang, Daquan & Yang, Shan & Ma, Shengming, 2018. "A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study," Energy, Elsevier, vol. 165(PB), pages 1085-1096.
    15. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    16. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    17. Gunasekara, Saman Nimali & Pan, Ruijun & Chiu, Justin Ningwei & Martin, Viktoria, 2016. "Polyols as phase change materials for surplus thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1439-1452.
    18. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Morales-Ruiz, S. & Rigola, J. & Oliet, C. & Oliva, A., 2016. "Analysis and design of a drain water heat recovery storage unit based on PCM plates," Applied Energy, Elsevier, vol. 179(C), pages 1006-1019.
    20. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:511-:d:483196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.