IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122006670.html
   My bibliography  Save this article

High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review

Author

Listed:
  • Liu, Yang
  • Zheng, Ruowei
  • Li, Ji

Abstract

To protect electronic devices and batteries from sharp temperature rise and thermal runaway, active/passive/hybrid thermal management using phase change materials (PCMs) shows prominent and promising potential to maintain them within an optimum temperature range. However, not all PCMs are suitable for practical applications owing to their undesirable thermophysical properties. Therefore, this paper focuses on the selection criteria of PCMs and various techniques for enhancing the thermal conductivity and improving the latent heat of fusion of PCMs. Over 200 PCMs as candidate covering the relevant operating temperature range of 0–100 °C are presented and compared in terms of different selection criteria. Furthermore, a comprehensive review of PCMs employed in cooling of electronic devices and thermal management of power batteries is provided. Finally, future outlooks and research topics on physico-thermal properties enhancement for PCMs and thermal management technologies with PCMs for electronic devices and power batteries are proposed.

Suggested Citation

  • Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006670
    DOI: 10.1016/j.rser.2022.112783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Wenlong & Yuan, Yanping & Sun, Liangliang & Cao, Xiaoling & Yang, Xiaojiao, 2016. "Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials," Renewable Energy, Elsevier, vol. 99(C), pages 1029-1037.
    2. Qian, Yong & Wei, Ping & Jiang, Pingkai & Li, Zhi & Yan, Yonggang & Liu, Jiping, 2013. "Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application," Applied Energy, Elsevier, vol. 106(C), pages 321-327.
    3. Wang, Lijiu & Meng, Duo, 2010. "Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 87(8), pages 2660-2665, August.
    4. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2016. "Advanced energy storage materials for building applications and their thermal performance characterization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 916-928.
    5. Huang, Zhaowen & Gao, Xuenong & Xu, Tao & Fang, Yutang & Zhang, Zhengguo, 2014. "Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 115(C), pages 265-271.
    6. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    7. Joshi, Varun & Rathod, Manish K., 2019. "Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2017. "Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 707-726.
    9. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    10. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    11. Ling, Ziye & Chen, Jiajie & Fang, Xiaoming & Zhang, Zhengguo & Xu, Tao & Gao, Xuenong & Wang, Shuangfeng, 2014. "Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system," Applied Energy, Elsevier, vol. 121(C), pages 104-113.
    12. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Iten, Muriel & Liu, Shuli & Shukla, Ashish, 2016. "A review on the air-PCM-TES application for free cooling and heating in the buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 175-186.
    14. Singh, Dileep & Kim, Taeil & Zhao, Weihuan & Yu, Wenhua & France, David M., 2016. "Development of graphite foam infiltrated with MgCl2 for a latent heat based thermal energy storage (LHTES) system," Renewable Energy, Elsevier, vol. 94(C), pages 660-667.
    15. Li, T.X. & Xu, J.X. & Wu, D.L. & He, F. & Wang, R.Z., 2019. "High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating," Applied Energy, Elsevier, vol. 248(C), pages 406-414.
    16. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    17. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    18. Li, Wenqiang & Zhang, Duo & Jing, Tingting & Gao, Mingyu & Liu, Peijin & He, Guoqiang & Qin, Fei, 2018. "Nano-encapsulated phase change material slurry (Nano-PCMS) saturated in metal foam: A new stable and efficient strategy for passive thermal management," Energy, Elsevier, vol. 165(PA), pages 743-751.
    19. Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
    20. Yin, Huibin & Gao, Xuenong & Ding, Jing & Zhang, Zhengguo & Fang, Yutang, 2010. "Thermal management of electronic components with thermal adaptation composite material," Applied Energy, Elsevier, vol. 87(12), pages 3784-3791, December.
    21. Feng, Daili & Feng, Yanhui & Qiu, Lin & Li, Pei & Zang, Yuyang & Zou, Hanying & Yu, Zepei & Zhang, Xinxin, 2019. "Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 578-605.
    22. Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
    23. Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
    24. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    25. Tong, Xuan & Li, Nianqi & Zeng, Min & Wang, Qiuwang, 2019. "Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 398-422.
    26. Jouhara, H. & Chauhan, A. & Nannou, T. & Almahmoud, S. & Delpech, B. & Wrobel, L.C., 2017. "Heat pipe based systems - Advances and applications," Energy, Elsevier, vol. 128(C), pages 729-754.
    27. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2015. "Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material," Energy, Elsevier, vol. 82(C), pages 468-478.
    28. Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2017. "Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials," Applied Energy, Elsevier, vol. 200(C), pages 19-27.
    29. Barreneche, Camila & de Gracia, Alvaro & Serrano, Susana & Elena Navarro, M. & Borreguero, Ana María & Inés Fernández, A. & Carmona, Manuel & Rodriguez, Juan Francisco & Cabeza, Luisa F., 2013. "Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials," Applied Energy, Elsevier, vol. 109(C), pages 421-427.
    30. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    31. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    32. Mahmoud, Saad & Tang, Aaron & Toh, Chin & AL-Dadah, Raya & Soo, Sein Leung, 2013. "Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks," Applied Energy, Elsevier, vol. 112(C), pages 1349-1356.
    33. Kenisarin, Murat M. & Kenisarina, Kamola M., 2012. "Form-stable phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1999-2040.
    34. Wu, Weixiong & Wu, Wei & Wang, Shuangfeng, 2019. "Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications," Applied Energy, Elsevier, vol. 236(C), pages 10-21.
    35. Yang, Xiaohu & Lu, Zhao & Bai, Qingsong & Zhang, Qunli & Jin, Liwen & Yan, Jinyue, 2017. "Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins," Applied Energy, Elsevier, vol. 202(C), pages 558-570.
    36. Liu, Lingkun & Alva, Guruprasad & Huang, Xiang & Fang, Guiyin, 2016. "Preparation, heat transfer and flow properties of microencapsulated phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 399-414.
    37. Mohamed, Nermen H. & Soliman, Fathi S. & El Maghraby, Heba & Moustfa, Y.M., 2017. "Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1052-1058.
    38. Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
    39. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    40. Alva, Guruprasad & Huang, Xiang & Liu, Lingkun & Fang, Guiyin, 2017. "Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 203(C), pages 677-685.
    41. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    42. Vogel, J. & Johnson, M., 2019. "Natural convection during melting in vertical finned tube latent thermal energy storage systems," Applied Energy, Elsevier, vol. 246(C), pages 38-52.
    43. Wang, Yi-Hsien & Yang, Yue-Tzu, 2011. "Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink," Energy, Elsevier, vol. 36(8), pages 5214-5224.
    44. Tian, Y. & Zhao, C.Y., 2011. "A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals," Energy, Elsevier, vol. 36(9), pages 5539-5546.
    45. Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.
    46. Colella, Francesco & Sciacovelli, Adriano & Verda, Vittorio, 2012. "Numerical analysis of a medium scale latent energy storage unit for district heating systems," Energy, Elsevier, vol. 45(1), pages 397-406.
    47. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Applied Energy, Elsevier, vol. 191(C), pages 22-34.
    48. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    49. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
    50. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    51. Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
    52. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    53. Liu, Zhenyu & Yao, Yuanpeng & Wu, Huiying, 2013. "Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage," Applied Energy, Elsevier, vol. 112(C), pages 1222-1232.
    54. Merlin, Kevin & Delaunay, Didier & Soto, Jérôme & Traonvouez, Luc, 2016. "Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM," Applied Energy, Elsevier, vol. 166(C), pages 107-116.
    55. Jiang, Feng & Ge, Zhiwei & Ling, Xiang & Cang, Daqiang & Zhang, Lingling & Ding, Yulong, 2021. "Improved thermophysical properties of shape-stabilized NaNO3 using a modified diatomite-based porous ceramic for solar thermal energy storage," Renewable Energy, Elsevier, vol. 179(C), pages 327-338.
    56. Hasan, A. & Sayigh, A.A., 1994. "Some fatty acids as phase-change thermal energy storage materials," Renewable Energy, Elsevier, vol. 4(1), pages 69-76.
    57. Ke, Huizhen & Ghulam, Mohy uddin Hafiz & Li, Yonggui & Wang, Jing & Peng, Bin & Cai, Yibing & Wei, Qufu, 2016. "Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy," Renewable Energy, Elsevier, vol. 99(C), pages 1-9.
    58. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    59. Kazemi, M. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2018. "Improvement of longitudinal fins configuration in latent heat storage systems," Renewable Energy, Elsevier, vol. 116(PA), pages 447-457.
    60. Takashi Uemura & Nobuhiro Yanai & Satoshi Watanabe & Hideki Tanaka & Ryohei Numaguchi & Minoru T. Miyahara & Yusuke Ohta & Masataka Nagaoka & Susumu Kitagawa, 2010. "Unveiling thermal transitions of polymers in subnanometre pores," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    61. Wang, Qingqing & Zhou, Dan & Chen, Yuming & Eames, Philip & Wu, Zhigen, 2020. "Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites," Renewable Energy, Elsevier, vol. 147(P1), pages 1131-1138.
    62. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    63. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    64. Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C. & Mahlia, T.M.I., 2013. "Curbing global warming with phase change materials for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 23-30.
    65. Yuan, Mengdi & Ren, Yunxiu & Xu, Chao & Ye, Feng & Du, Xiaoze, 2019. "Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 136(C), pages 211-222.
    66. Zhang, Zhengguo & Zhang, Ni & Peng, Jing & Fang, Xiaoming & Gao, Xuenong & Fang, Yutang, 2012. "Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 91(1), pages 426-431.
    67. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    68. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    69. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
    70. Zhang, Xiaoguang & Yin, Zhaoyu & Meng, Dezhi & Huang, Zhaohui & Wen, Ruilong & Huang, Yaoting & Min, Xin & Liu, Yangai & Fang, Minghao & Wu, Xiaowen, 2017. "Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite," Renewable Energy, Elsevier, vol. 112(C), pages 113-123.
    71. Sardari, Pouyan Talebizadeh & Giddings, Donald & Grant, David & Gillott, Mark & Walker, Gavin S., 2020. "Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit," Renewable Energy, Elsevier, vol. 148(C), pages 987-1001.
    72. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    73. Samimi, Fereshteh & Babapoor, Aziz & Azizi, Mohammadmehdi & Karimi, Gholamreza, 2016. "Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers," Energy, Elsevier, vol. 96(C), pages 355-371.
    74. Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
    75. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    76. Longeon, Martin & Soupart, Adèle & Fourmigué, Jean-François & Bruch, Arnaud & Marty, Philippe, 2013. "Experimental and numerical study of annular PCM storage in the presence of natural convection," Applied Energy, Elsevier, vol. 112(C), pages 175-184.
    77. Zhang, P. & Meng, Z.N. & Zhu, H. & Wang, Y.L. & Peng, S.P., 2017. "Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam," Applied Energy, Elsevier, vol. 185(P2), pages 1971-1983.
    78. Ling, Yun-Zhi & Zhang, Xiao-Song & Wang, Feng & She, Xiao-Hui, 2020. "Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling," Renewable Energy, Elsevier, vol. 154(C), pages 636-649.
    79. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
    80. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    81. Zhang, Yuang & Wang, Lingjuan & Tang, Bingtao & Lu, Rongwen & Zhang, Shufen, 2016. "Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure," Applied Energy, Elsevier, vol. 184(C), pages 241-246.
    82. Liang, Jialin & Gan, Yunhua & Li, Yong & Tan, Meixian & Wang, Jianqin, 2019. "Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures," Energy, Elsevier, vol. 189(C).
    83. Sarı, A & Kaygusuz, K, 2003. "Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling," Renewable Energy, Elsevier, vol. 28(6), pages 939-948.
    84. Veerakumar, C. & Sreekumar, A., 2020. "Thermo-physical investigation and experimental discharge characteristics of lauryl alcohol as a potential phase change material for thermal management in buildings," Renewable Energy, Elsevier, vol. 148(C), pages 492-503.
    85. Sciacovelli, A. & Gagliardi, F. & Verda, V., 2015. "Maximization of performance of a PCM latent heat storage system with innovative fins," Applied Energy, Elsevier, vol. 137(C), pages 707-715.
    86. Shukla, Anant & Buddhi, D. & Sawhney, R.L., 2008. "Thermal cycling test of few selected inorganic and organic phase change materials," Renewable Energy, Elsevier, vol. 33(12), pages 2606-2614.
    87. Jamekhorshid, A. & Sadrameli, S.M. & Farid, M., 2014. "A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 531-542.
    88. Mortazavi, Bohayra & Yang, Hongliu & Mohebbi, Farzad & Cuniberti, Gianaurelio & Rabczuk, Timon, 2017. "Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation," Applied Energy, Elsevier, vol. 202(C), pages 323-334.
    89. Sharma, Atul & Won, Lee Dong & Buddhi, D & Park, Jun Un, 2005. "Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system," Renewable Energy, Elsevier, vol. 30(14), pages 2179-2187.
    90. Rao, Zhonghao & Wang, Qingchao & Huang, Congliang, 2016. "Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system," Applied Energy, Elsevier, vol. 164(C), pages 659-669.
    91. Tao, Y.B. & He, Y.L., 2015. "Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube," Applied Energy, Elsevier, vol. 143(C), pages 38-46.
    92. Sohel Murshed, S.M. & Nieto de Castro, C.A., 2017. "A critical review of traditional and emerging techniques and fluids for electronics cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 821-833.
    93. Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
    94. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2006. "Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 31(13), pages 2025-2041.
    95. Wang, Changhong & Lin, Tao & Li, Na & Zheng, Huanpei, 2016. "Heat transfer enhancement of phase change composite material: Copper foam/paraffin," Renewable Energy, Elsevier, vol. 96(PA), pages 960-965.
    96. Weng, Ying-Che & Cho, Hung-Pin & Chang, Chih-Chung & Chen, Sih-Li, 2011. "Heat pipe with PCM for electronic cooling," Applied Energy, Elsevier, vol. 88(5), pages 1825-1833, May.
    97. Wang, Zhifeng & Wu, Jiani & Lei, Dongqiang & Liu, Hong & Li, Jinping & Wu, Zhiyong, 2020. "Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application," Applied Energy, Elsevier, vol. 261(C).
    98. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    99. Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
    100. Ling, Ziye & Wen, Xiaoyan & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures," Energy, Elsevier, vol. 144(C), pages 977-983.
    101. Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2016. "Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials," Applied Energy, Elsevier, vol. 182(C), pages 475-487.
    102. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    103. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    104. Fang, Guiyin & Tang, Fang & Cao, Lei, 2014. "Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 237-259.
    105. Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
    106. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    107. Safari, A. & Saidur, R. & Sulaiman, F.A. & Xu, Yan & Dong, Joe, 2017. "A review on supercooling of Phase Change Materials in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 905-919.
    108. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
    109. Wong-Pinto, Liey-Si & Milian, Yanio & Ushak, Svetlana, 2020. "Progress on use of nanoparticles in salt hydrates as phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    110. Nourani, Moloud & Hamdami, Nasser & Keramat, Javad & Moheb, Ahmad & Shahedi, Mohammad, 2016. "Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity," Renewable Energy, Elsevier, vol. 88(C), pages 474-482.
    111. Wang, Hongfei & Wang, Fanxu & Li, Zongtao & Tang, Yong & Yu, Binhai & Yuan, Wei, 2016. "Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material," Applied Energy, Elsevier, vol. 176(C), pages 221-232.
    112. Sahoo, Santosh Kumar & Das, Mihir Kumar & Rath, Prasenjit, 2016. "Application of TCE-PCM based heat sinks for cooling of electronic components: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 550-582.
    113. Shahsavar, Amin & Goodarzi, Abbas & Mohammed, Hayder I. & Shirneshan, Alireza & Talebizadehsardari, Pouyan, 2020. "Thermal performance evaluation of non-uniform fin array in a finned double-pipe latent heat storage system," Energy, Elsevier, vol. 193(C).
    114. Konuklu, Yeliz & Paksoy, Halime O. & Unal, Murat, 2015. "Nanoencapsulation of n-alkanes with poly(styrene-co-ethylacrylate) shells for thermal energy storage," Applied Energy, Elsevier, vol. 150(C), pages 335-340.
    115. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    116. Mu, Mulan & Basheer, P.A.M. & Sha, Wei & Bai, Yun & McNally, Tony, 2016. "Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes," Applied Energy, Elsevier, vol. 162(C), pages 68-82.
    117. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    118. Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
    119. Ling, Ziye & Zhang, Zhengguo & Shi, Guoquan & Fang, Xiaoming & Wang, Lei & Gao, Xuenong & Fang, Yutang & Xu, Tao & Wang, Shuangfeng & Liu, Xiaohong, 2014. "Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 427-438.
    120. Yang, Xiaohu & Feng, Shangsheng & Zhang, Qunli & Chai, Yue & Jin, Liwen & Lu, Tian Jian, 2017. "The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage," Applied Energy, Elsevier, vol. 194(C), pages 508-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moeed Rabiei & Ayat Gharehghani & Soheil Saeedipour & Amin Mahmoudzadeh Andwari & Juho Könnö, 2023. "Proposing a Hybrid BTMS Using a Novel Structure of a Microchannel Cold Plate and PCM," Energies, MDPI, vol. 16(17), pages 1-20, August.
    2. Yao, Haichen & Liu, Xianglei & Li, Jiawei & Luo, Qingyang & Tian, Yang & Xuan, Yimin, 2023. "Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system," Energy, Elsevier, vol. 284(C).
    3. Liu, Qinggong & Tao, Yao & Shi, Long & Huang, Yi & Peng, Yuanling & Wang, Yong & Tu, Jiyuan, 2023. "Experimental investigations on the thermal performance of a novel ground heat exchanger under the synergistic effects of shape-stabilized phase change material and nanofluid," Energy, Elsevier, vol. 284(C).
    4. Krzysztof Dutkowski & Marcin Kruzel, 2023. "The State of the Art on the Flow Characteristic of an Encapsulated Phase-Change Material Slurry," Energies, MDPI, vol. 16(19), pages 1-27, October.
    5. Jixian Sun & Dan Dan & Mingshan Wei & Senlin Cai & Yihang Zhao & Edward Wright, 2023. "Pack-Level Modeling and Thermal Analysis of a Battery Thermal Management System with Phase Change Materials and Liquid Cooling," Energies, MDPI, vol. 16(15), pages 1-16, August.
    6. Michał Musiał & Lech Lichołai & Dušan Katunský, 2023. "Modern Thermal Energy Storage Systems Dedicated to Autonomous Buildings," Energies, MDPI, vol. 16(11), pages 1-28, May.
    7. Zeng, Ziya & Zhao, Bingchen & Wang, Ruzhu, 2023. "High-power-density packed-bed thermal energy storage using form-stable expanded graphite-based phase change composite," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Yafang Zhang & Jiebin Tang & Jialin Chen & Yuhai Zhang & Xiangxiang Chen & Meng Ding & Weijia Zhou & Xijin Xu & Hong Liu & Guobin Xue, 2023. "Accelerating the solar-thermal energy storage via inner-light supplying with optical waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Michał Musiał & Lech Lichołai & Agnieszka Pękala, 2023. "Analysis of the Thermal Performance of Isothermal Composite Heat Accumulators Containing Organic Phase-Change Material," Energies, MDPI, vol. 16(3), pages 1-24, January.
    10. Kyle Shank & Saeed Tiari, 2023. "A Review on Active Heat Transfer Enhancement Techniques within Latent Heat Thermal Energy Storage Systems," Energies, MDPI, vol. 16(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    6. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    8. Li, Zongtao & Wu, Yuxuan & Zhuang, Baoshan & Zhao, Xuezhi & Tang, Yong & Ding, Xinrui & Chen, Kaihang, 2017. "Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity," Applied Energy, Elsevier, vol. 206(C), pages 1147-1157.
    9. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    10. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    12. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    15. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    18. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    19. Wu, Weixiong & Wu, Wei & Wang, Shuangfeng, 2019. "Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications," Applied Energy, Elsevier, vol. 236(C), pages 10-21.
    20. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.