IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v11y2007i6p1146-1166.html
   My bibliography  Save this article

PCM thermal storage in buildings: A state of art

Author

Listed:
  • Tyagi, Vineet Veer
  • Buddhi, D.

Abstract

A comprehensive review of various possible methods for heating and cooling in buildings are discussed in this paper. The thermal performance of various types of systems like PCM trombe wall, PCM wallboards, PCM shutters, PCM building blocks, air-based heating systems, floor heating, ceiling boards, etc., is presented in this paper. All systems have good potential for heating and cooling in building through phase change materials and also very beneficial to reduce the energy demand of the buildings.

Suggested Citation

  • Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
  • Handle: RePEc:eee:rensus:v:11:y:2007:i:6:p:1146-1166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(05)00097-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadjieva, M & Stoykov, R & Filipova, Tz, 2000. "Composite salt-hydrate concrete system for building energy storage," Renewable Energy, Elsevier, vol. 19(1), pages 111-115.
    2. Riffat, S.B. & Omer, S.A. & Ma, Xiaoli, 2001. "A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation," Renewable Energy, Elsevier, vol. 23(2), pages 313-323.
    3. Stritih, U. & Novak, P., 1996. "Solar heat storage wall for building ventilation," Renewable Energy, Elsevier, vol. 8(1), pages 268-271.
    4. Jurinak, J.J. & Abdel-Khalik, S.I., 1979. "On the performance of air-based solar heating systems utilizing phase-change energy storage," Energy, Elsevier, vol. 4(4), pages 503-522.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    2. Fisac, Miguel & Villasevil, Francesc X. & López, Antonio M., 2015. "Design of a thermoelectric generator with fast transient response," Renewable Energy, Elsevier, vol. 81(C), pages 658-663.
    3. Hermes, Christian J.L. & Barbosa, Jader R., 2012. "Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers," Applied Energy, Elsevier, vol. 91(1), pages 51-58.
    4. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    5. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    6. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    7. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    8. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    9. Owoyele, Opeoluwa & Ferguson, Scott & O’Connor, Brendan T., 2015. "Performance analysis of a thermoelectric cooler with a corrugated architecture," Applied Energy, Elsevier, vol. 147(C), pages 184-191.
    10. Darkwa, K. & O'Callaghan, P.W. & Tetlow, D., 2006. "Phase-change drywalls in a passive-solar building," Applied Energy, Elsevier, vol. 83(5), pages 425-435, May.
    11. Karaipekli, Ali & Sarı, Ahmet, 2008. "Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 33(12), pages 2599-2605.
    12. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    13. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    14. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    15. Silva, Tiago & Vicente, Romeu & Rodrigues, Fernanda, 2016. "Literature review on the use of phase change materials in glazing and shading solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 515-535.
    16. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
    17. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    18. Zhu, Na & Li, Xingkun & Hu, Pingfang & Lei, Fei & Wei, Shen & Wang, Wentao, 2022. "An exploration on the performance of using phase change humidity control material wallboards in office buildings," Energy, Elsevier, vol. 239(PE).
    19. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    20. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:11:y:2007:i:6:p:1146-1166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.