IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v272y2020ics0306261920305778.html
   My bibliography  Save this article

Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads

Author

Listed:
  • Diaz-Londono, Cesar
  • Enescu, Diana
  • Ruiz, Fredy
  • Mazza, Andrea

Abstract

In the last years, the interest regarding thermoelectric refrigerators has increased thanks to their properties such as the absence of moving parts and toxic or fire-sensitive refrigerants, robustness, and low weight. These devices are also quite flexible and may represent a suitable solution to offer grid services to proper demand response programs. In this article, an aggregation strategy is proposed to fulfil system operator requests on power deviations with limited information exchange between the aggregator and each refrigerator. Downward and upward flexibility in energy consumption can be offered, allowing an aggregated set of loads to provide balancing services such as frequency containment reserve, frequency restoration reserve or replacement reserve to the electrical grid. First, a dynamic model of a thermoelectric refrigerator is built and validated using experimental data collected from a real device under controlled and replicable experimental conditions. A modified temperature controller is proposed and an aggregation strategy with reduced communication requirements is formulated. Then, the aggregation of thermoelectric refrigerators is represented with a linear model to determine that this aggregation can behave as flexible load for reserve provision and demand response applications. It is shown through extensive simulations that a set of refrigerators can operate as in a flexible way by modifying their internal temperature set points, responding in less than 30 s to any power deviation command and sustaining the modified consumption for up to 15 min in the frequency containment and restoration reserves services, and up to 1 h in the replacement reserve service, without overshoots, rebounds, or synchronization problems.

Suggested Citation

  • Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920305778
    DOI: 10.1016/j.apenergy.2020.115065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920305778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diaz, Cesar & Ruiz, Fredy & Patino, Diego, 2017. "Modeling and control of water booster pressure systems as flexible loads for demand response," Applied Energy, Elsevier, vol. 204(C), pages 106-116.
    2. Martínez, A. & Astrain, D. & Rodríguez, A., 2013. "Dynamic model for simulation of thermoelectric self cooling applications," Energy, Elsevier, vol. 55(C), pages 1114-1126.
    3. Min, Gao & Rowe, D.M., 2006. "Experimental evaluation of prototype thermoelectric domestic-refrigerators," Applied Energy, Elsevier, vol. 83(2), pages 133-152, February.
    4. Zhao, Dongliang & Tan, Gang, 2014. "Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling," Energy, Elsevier, vol. 68(C), pages 658-666.
    5. Kremers, Enrique & González de Durana, José Marı´a & Barambones, Oscar, 2013. "Emergent synchronisation properties of a refrigerator demand side management system," Applied Energy, Elsevier, vol. 101(C), pages 709-717.
    6. Zhou, Yue & Wang, Chengshan & Wu, Jianzhong & Wang, Jidong & Cheng, Meng & Li, Gen, 2017. "Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market," Applied Energy, Elsevier, vol. 188(C), pages 456-465.
    7. Mahmood Hosseini Imani & Shaghayegh Zalzar & Amir Mosavi & Shahaboddin Shamshirband, 2018. "Strategic Behavior of Retailers for Risk Reduction and Profit Increment via Distributed Generators and Demand Response Programs," Energies, MDPI, vol. 11(6), pages 1-24, June.
    8. Riffat, S.B. & Omer, S.A. & Ma, Xiaoli, 2001. "A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation," Renewable Energy, Elsevier, vol. 23(2), pages 313-323.
    9. Vuelvas, José & Ruiz, Fredy & Gruosso, Giambattista, 2018. "Limiting gaming opportunities on incentive-based demand response programs," Applied Energy, Elsevier, vol. 225(C), pages 668-681.
    10. Jung, Wooyoung & Jazizadeh, Farrokh, 2019. "Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions," Applied Energy, Elsevier, vol. 239(C), pages 1471-1508.
    11. Yin, Rongxin & Kara, Emre C. & Li, Yaping & DeForest, Nicholas & Wang, Ke & Yong, Taiyou & Stadler, Michael, 2016. "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes," Applied Energy, Elsevier, vol. 177(C), pages 149-164.
    12. Hermes, Christian J.L. & Barbosa, Jader R., 2012. "Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers," Applied Energy, Elsevier, vol. 91(1), pages 51-58.
    13. Lakshmanan, Venkatachalam & Marinelli, Mattia & Kosek, Anna M. & Nørgård, Per B. & Bindner, Henrik W., 2016. "Impact of thermostatically controlled loads' demand response activation on aggregated power: A field experiment," Energy, Elsevier, vol. 94(C), pages 705-714.
    14. Kody T. Ponds & Ali Arefi & Ali Sayigh & Gerard Ledwich, 2018. "Aggregator of Demand Response for Renewable Integration and Customer Engagement: Strengths, Weaknesses, Opportunities, and Threats," Energies, MDPI, vol. 11(9), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonny Esteban Villa Londono & Andrea Mazza & Enrico Pons & Harm Lok & Ettore Bompard, 2021. "Modelling and Control of a Grid-Connected RES-Hydrogen Hybrid Microgrid," Energies, MDPI, vol. 14(6), pages 1-25, March.
    2. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    3. Niko Karhula & Seppo Sierla & Valeriy Vyatkin, 2021. "Validating the Real-Time Performance of Distributed Energy Resources Participating on Primary Frequency Reserves," Energies, MDPI, vol. 14(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    2. Diaz, Cesar & Ruiz, Fredy & Patino, Diego, 2017. "Modeling and control of water booster pressure systems as flexible loads for demand response," Applied Energy, Elsevier, vol. 204(C), pages 106-116.
    3. Hermes, Christian J.L. & Barbosa, Jader R., 2012. "Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers," Applied Energy, Elsevier, vol. 91(1), pages 51-58.
    4. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    5. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    6. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    7. Kai Ma & Chenliang Yuan & Jie Yang & Zhixin Liu & Xinping Guan, 2017. "Switched Control Strategies of Aggregated Commercial HVAC Systems for Demand Response in Smart Grids," Energies, MDPI, vol. 10(7), pages 1-18, July.
    8. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    10. Bomela, Walter & Zlotnik, Anatoly & Li, Jr-Shin, 2018. "A phase model approach for thermostatically controlled load demand response," Applied Energy, Elsevier, vol. 228(C), pages 667-680.
    11. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Irshad, Kashif & Habib, Khairul & Thirumalaiswamy, Nagarajan & Saha, Bidyut Baran, 2015. "Performance analysis of a thermoelectric air duct system for energy-efficient buildings," Energy, Elsevier, vol. 91(C), pages 1009-1017.
    13. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
    14. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    15. Maryam Al Owidh & Basma Souayeh & Imran Qasim Memon & Kashif Ali Abro & Huda Alfannakh, 2022. "Heat Transfer and Fluid Circulation of Thermoelectric Fluid through the Fractional Approach Based on Local Kernel," Energies, MDPI, vol. 15(22), pages 1-12, November.
    16. Jung, Wooyoung & Jazizadeh, Farrokh, 2020. "Energy saving potentials of integrating personal thermal comfort models for control of building systems: Comprehensive quantification through combinatorial consideration of influential parameters," Applied Energy, Elsevier, vol. 268(C).
    17. Vuelvas, José & Ruiz, Fredy & Gruosso, Giambattista, 2018. "Limiting gaming opportunities on incentive-based demand response programs," Applied Energy, Elsevier, vol. 225(C), pages 668-681.
    18. Agnieszka Żelazna & Justyna Gołębiowska, 2020. "A PV-Powered TE Cooling System with Heat Recovery: Energy Balance and Environmental Impact Indicators," Energies, MDPI, vol. 13(7), pages 1-22, April.
    19. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Ma, Xiaoli & Zhang, Yufeng & Han, Zhonghe & Zang, Ningbo & Liu, Zhijian, 2023. "Performance modelling on a thermoelectric air conditioning system using high power heat sinks and promoting waste heat utilization," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920305778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.