IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp636-649.html
   My bibliography  Save this article

Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling

Author

Listed:
  • Ling, Yun-Zhi
  • Zhang, Xiao-Song
  • Wang, Feng
  • She, Xiao-Hui

Abstract

Electronic cooling has been a rising issue mainly due to the rapid development of high-throughput computing in data centres as well as battery energy storage, which release huge amount of heat through compact surfaces. The electronic cooling process is not only energy-intensive but also difficult to control. This paper proposes an effective cooling method for electronic devices by integrating phase change materials (PCMs) with three-dimensional oscillating heat pipes (3D-OHPs), where PCMs are used to store heat dissipated by the electronic device and 3D-OHPs to fast transport the stored heat from PCMs to the environment. A novel leaf-shaped structure is designed for the 3D-OHPs. Experimental study is carried out on the leaf-shaped 3D-OHPs with various working parameters including cooling air velocity, wind direction and heat input. Further, the leaf-shaped 3D-OHPs are embedded into PCMs to cool down the electronic devices. Temperature variations and thermal resistance are evaluated and compared with the conventional air cooling method. The experimental results indicate that the surface temperature of electronic devices can be well controlled below 100 °C, which is ∼35 °C lower than that with conventional air cooling. The thermal resistance is decreased up to 36.3%. The 3D-OHPs with a filling ratio of 34–44% achieve the best thermal performance. What’s more, the leaf-shaped structure of the 3D-OHPs contributes to a ∼2 °C lower temperature on the electronic device’s surface than the typical used 3D-OHPs. This research will promote the development of effective cooling for electronic devices.

Suggested Citation

  • Ling, Yun-Zhi & Zhang, Xiao-Song & Wang, Feng & She, Xiao-Hui, 2020. "Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling," Renewable Energy, Elsevier, vol. 154(C), pages 636-649.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:636-649
    DOI: 10.1016/j.renene.2020.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebrahimi, A. & Hosseini, M.J. & Ranjbar, A.A. & Rahimi, M. & Bahrampoury, R., 2019. "Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe," Renewable Energy, Elsevier, vol. 138(C), pages 378-394.
    2. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    3. Nada, S.A. & El-Nagar, D.H., 2018. "Possibility of using PCMs in temperature control and performance enhancements of free stand and building integrated PV modules," Renewable Energy, Elsevier, vol. 127(C), pages 630-641.
    4. Sun, Wanchun & Huang, Rui & Ling, Ziye & Fang, Xiaoming & Zhang, Zhengguo, 2020. "Numerical simulation on the thermal performance of a PCM-containing ventilation system with a continuous change in inlet air temperature," Renewable Energy, Elsevier, vol. 145(C), pages 1608-1619.
    5. Rittidech, S. & Donmaung, A. & Kumsombut, K., 2009. "Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV)," Renewable Energy, Elsevier, vol. 34(10), pages 2234-2238.
    6. Liang, Jialin & Gan, Yunhua & Li, Yong & Tan, Meixian & Wang, Jianqin, 2019. "Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures," Energy, Elsevier, vol. 189(C).
    7. Emam, Mohamed & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: Experimental investigations," Renewable Energy, Elsevier, vol. 141(C), pages 322-339.
    8. Wang, Changhong & Lin, Tao & Li, Na & Zheng, Huanpei, 2016. "Heat transfer enhancement of phase change composite material: Copper foam/paraffin," Renewable Energy, Elsevier, vol. 96(PA), pages 960-965.
    9. Weng, Ying-Che & Cho, Hung-Pin & Chang, Chih-Chung & Chen, Sih-Li, 2011. "Heat pipe with PCM for electronic cooling," Applied Energy, Elsevier, vol. 88(5), pages 1825-1833, May.
    10. Han, Xiaohong & Wang, Xuehui & Zheng, Haoce & Xu, Xiangguo & Chen, Guangming, 2016. "Review of the development of pulsating heat pipe for heat dissipation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 692-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei-Wei & Zhang, Hong-Liang & Song, Yong-Juan & Song, Jia-Wei & Shi, Dun-Ke & Zhao, Fu-Yun & Cai, Yang, 2022. "Fluid flow and thermal performance of the pulsating heat pipes facilitated with solar collectors: Experiments, theories and GABPNN machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1533-1547.
    2. Safari, Vahid & Abolghasemi, Hossein & Kamkari, Babak, 2021. "Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins," Renewable Energy, Elsevier, vol. 174(C), pages 102-121.
    3. Xiaohuan Zhao & Yue Zhu & Hailiang Li, 2022. "Micro-Channel Oscillating Heat Pipe Energy Conversion Approach of Battery Heat Dissipation Improvement: A Review," Energies, MDPI, vol. 15(19), pages 1-29, October.
    4. Tian, Yang & Liu, Xianglei & Zheng, Hangbin & Xu, Qiao & Zhu, Zhonghui & Luo, Qinyang & Song, Chao & Gao, Ke & Yao, Haichen & Dang, Chunzhuo & Xuan, Yimin, 2022. "Artificial mitochondrion for fast latent heat storage: Experimental study and lattice Boltzmann simulation," Energy, Elsevier, vol. 245(C).
    5. Mohamed Boujelbene & Amira M. Hussin & Seyed Abdollah Mansouri Mehryan & Mohsen Sharifpur, 2023. "The Effect of Different Configurations of Copper Structures on the Melting Flow in a Latent Heat Thermal Energy Semi-Cylindrical Unit," Mathematics, MDPI, vol. 11(20), pages 1-20, October.
    6. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Zhao, Weiwei & Zhang, Tongtong & Kildahl, Harriet & Ding, Yulong, 2022. "Mobile energy recovery and storage: Multiple energy-powered EVs and refuelling stations," Energy, Elsevier, vol. 257(C).
    5. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad & Mahian, Omid & Kalogirou, Soteris & Wongwises, Somchai, 2018. "A review on pulsating heat pipes: From solar to cryogenic applications," Applied Energy, Elsevier, vol. 222(C), pages 475-484.
    6. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    7. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    9. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    10. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    11. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    12. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    13. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    14. Van-Tinh Huynh & Kyoungsik Chang & Sang-Wook Lee, 2023. "Numerical Investigation of the Thermal Performance of a Hybrid Phase Change Material and Forced Air Cooling System for a Three-Cell Lithium-Ion Battery Module," Energies, MDPI, vol. 16(24), pages 1-19, December.
    15. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
    16. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    17. Liu, Huaqiang & Ahmad, Shakeel & Shi, Yu & Zhao, Jiyun, 2021. "A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling," Energy, Elsevier, vol. 231(C).
    18. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Liang, L. & Wang, T.Y. & An, Y., 2021. "Optimization of phase change thermal storage units/devices with multichannel flat tubes: A theoretical study," Renewable Energy, Elsevier, vol. 167(C), pages 700-717.
    19. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Zhang, Jiajie & Li, Rui & Zhang, Mengbin & Peng, Jingqi & Fan, Yuchen & Ma, Suxia & Zhang, Jiansheng, 2023. "A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:636-649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.