IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v77y2014icp265-270.html
   My bibliography  Save this article

Heat pipe based thermal management systems for energy-efficient data centres

Author

Listed:
  • Jouhara, Hussam
  • Meskimmon, Richard

Abstract

This paper investigates the potential applications for heat-pipe based heat exchangers in enhancing the efficiency of data centres’ cooling. The paper starts by assessing current industry practise and highlighting the challenges facing the data-storage industry; illustrating the legislative, technical and commercial constraints that are now, or will be prevalent in the industry as the sector continues to grow to cater for the ever increasing appetite for public sector, commercial and consumer remote data storage. The concept of free cooling and its potential application in data-centres is then introduced and analysed. A theoretical model is then constructed based on the established, proven performance characteristics of heat-pipe technologies and the weather data for a typical region in the UK. A case study has been conducted thereon and the results indicate potential energy savings of up to 75% are achievable when utilising heat pipe based free cooling systems.

Suggested Citation

  • Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
  • Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:265-270
    DOI: 10.1016/j.energy.2014.08.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214010500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nithyanandam, K. & Pitchumani, R., 2013. "Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power," Applied Energy, Elsevier, vol. 103(C), pages 400-415.
    2. Jouhara, Hussam & Ajji, Zaki & Koudsi, Yahia & Ezzuddin, Hatem & Mousa, Nisreen, 2013. "Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture," Energy, Elsevier, vol. 61(C), pages 139-147.
    3. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    4. Jouhara, Hussam & Merchant, Hasnain, 2012. "Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 39(1), pages 82-89.
    5. Hussam Jouhara, 2009. "Economic assessment of the benefits of wraparound heat pipes in ventilation processes for hot and humid climates," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(1), pages 52-60, March.
    6. Jouhara, Hussam & Meskimmon, Richard, 2010. "Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 35(12), pages 4592-4599.
    7. Weng, Ying-Che & Cho, Hung-Pin & Chang, Chih-Chung & Chen, Sih-Li, 2011. "Heat pipe with PCM for electronic cooling," Applied Energy, Elsevier, vol. 88(5), pages 1825-1833, May.
    8. Siriwardana, Jayantha & Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Potential of air-side economizers for data center cooling: A case study for key Australian cities," Applied Energy, Elsevier, vol. 104(C), pages 207-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Ruiwen & Ling, Xiang & Peng, Hao & Yang, Lin, 2018. "Thermal characteristics of the combined flat plate heat receiver in solar power tower plant," Energy, Elsevier, vol. 165(PA), pages 275-289.
    2. Güğül, Gül Nihal & Gökçül, Furkan & Eicker, Ursula, 2023. "Sustainability analysis of zero energy consumption data centers with free cooling, waste heat reuse and renewable energy systems: A feasibility study," Energy, Elsevier, vol. 262(PB).
    3. Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.
    4. Shasha Deng & Kuining Li & Yi Xie & Cunxue Wu & Pingzhong Wang & Miao Yu & Bo Li & Jintao Zheng, 2019. "Heat Pipe Thermal Management Based on High-Rate Discharge and Pulse Cycle Tests for Lithium-Ion Batteries," Energies, MDPI, vol. 12(16), pages 1-14, August.
    5. He, Wei & Ding, Su & Zhang, Jifang & Pei, Chenchen & Zhang, Zhiheng & Wang, Yulin & Li, Hailong, 2021. "Performance optimization of server water cooling system based on minimum energy consumption analysis," Applied Energy, Elsevier, vol. 303(C).
    6. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    7. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    8. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    9. Wansheng Yang & Lin Yang & Junjie Ou & Zhongqi Lin & Xudong Zhao, 2019. "Investigation of Heat Management in High Thermal Density Communication Cabinet by a Rear Door Liquid Cooling System," Energies, MDPI, vol. 12(22), pages 1-25, November.
    10. Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).
    11. Liu, Changtian & Du, Mingsheng & Zhou, Ruiwen & Wang, Hang & Ling, Xiang & Hu, Yige, 2022. "Experimental investigation on thermal characteristics of a novel mesh flat-plate heat receiver in a solar power tower system," Energy, Elsevier, vol. 242(C).
    12. Han, Zongwei & Wei, Haotian & Sun, Xiaoqing & Bai, Chenguang & Xue, Da & Li, Xiuming, 2020. "Study on influence of operating parameters of data center air conditioning system based on the concept of on-demand cooling," Renewable Energy, Elsevier, vol. 160(C), pages 99-111.
    13. Sucic, Boris & Al-Mansour, Fouad & Pusnik, Matevz & Vuk, Tomaz, 2016. "Context sensitive production planning and energy management approach in energy intensive industries," Energy, Elsevier, vol. 108(C), pages 63-73.
    14. He, Zhiguang & Xi, Haonan & Wang, Jianmin & Li, Zhen & Cao, Jianguo & Li, Haibin, 2022. "Synergy optimization analysis of heat transfer performance and energy consumption in heat transfer process and its application in data centers," Applied Energy, Elsevier, vol. 307(C).
    15. Gad, Ramadan & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Performance evaluation of direct and indirect thermal regulation of low concentrated (via compound parabolic collector) solar panel using phase change material-flat heat pipe cooling system," Energy, Elsevier, vol. 274(C).
    16. Jouhara, Hussam & Bertrand, Delpech & Axcell, Brian & Montorsi, Luca & Venturelli, Matteo & Almahmoud, Sulaiman & Milani, Massimo & Ahmad, Lujean & Chauhan, Amisha, 2021. "Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery," Energy, Elsevier, vol. 223(C).
    17. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    18. Alizadeh, Araz & Ghadamian, Hossein & Aminy, Mohammad & Hoseinzadeh, Siamak & Khodayar Sahebi, Hamed & Sohani, Ali, 2022. "An experimental investigation on using heat pipe heat exchanger to improve energy performance in gas city gate station," Energy, Elsevier, vol. 252(C).
    19. Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
    20. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    21. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    2. Chan, C.W. & Siqueiros, E. & Ling-Chin, J. & Royapoor, M. & Roskilly, A.P., 2015. "Heat utilisation technologies: A critical review of heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 615-627.
    3. Amini, Amir & Miller, Jeremy & Jouhara, Hussam, 2017. "An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers," Energy, Elsevier, vol. 136(C), pages 163-172.
    4. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    5. Jouhara, Hussam & Ezzuddin, Hatem, 2013. "Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A," Energy, Elsevier, vol. 61(C), pages 128-138.
    6. Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).
    7. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    8. Jouhara, Hussam & Ajji, Zaki & Koudsi, Yahia & Ezzuddin, Hatem & Mousa, Nisreen, 2013. "Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture," Energy, Elsevier, vol. 61(C), pages 139-147.
    9. Jafari, Davoud & Franco, Alessandro & Filippeschi, Sauro & Di Marco, Paolo, 2016. "Two-phase closed thermosyphons: A review of studies and solar applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 575-593.
    10. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    11. Mroue, H. & Ramos, J.B. & Wrobel, L.C. & Jouhara, H., 2017. "Performance evaluation of a multi-pass air-to-water thermosyphon-based heat exchanger," Energy, Elsevier, vol. 139(C), pages 1243-1260.
    12. Pei, Wansheng & Zhang, Mingyi & Li, Shuangyang & Lai, Yuanming & Dong, Yuanhong & Jin, Long, 2019. "Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization," Renewable Energy, Elsevier, vol. 133(C), pages 1178-1187.
    13. Natthakit Ritthong & Sommart Thongkom & Apichai Sawisit & Boonyabhorn Duangsa & Wirote Ritthong, 2024. "Optimization Design of Closed-Loop Thermosyphons: Experimentation and Computational Fluid Dynamics Modeling," Energies, MDPI, vol. 17(2), pages 1-18, January.
    14. Sarafraz, M.M. & Pourmehran, O. & Yang, B. & Arjomandi, M., 2019. "Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids," Renewable Energy, Elsevier, vol. 136(C), pages 884-895.
    15. Jouhara, Hussam & Merchant, Hasnain, 2012. "Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 39(1), pages 82-89.
    16. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    17. Alireza Esmaeilzadeh & Mahyar Silakhori & Nik Nazri Nik Ghazali & Hendrik Simon Cornelis Metselaar & Azuddin Bin Mamat & Mohammad Sajad Naghavi Sanjani & Soudeh Iranmanesh, 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe," Energies, MDPI, vol. 13(24), pages 1-21, December.
    18. Zhang, L.Y. & Liu, Y.Y. & Guo, X. & Meng, X.Z. & Jin, L.W. & Zhang, Q.L. & Hu, W.J., 2017. "Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station," Applied Energy, Elsevier, vol. 194(C), pages 499-507.
    19. Gad, Ramadan & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Performance evaluation of direct and indirect thermal regulation of low concentrated (via compound parabolic collector) solar panel using phase change material-flat heat pipe cooling system," Energy, Elsevier, vol. 274(C).
    20. Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:77:y:2014:i:c:p:265-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.