IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3143-d258025.html
   My bibliography  Save this article

Heat Pipe Thermal Management Based on High-Rate Discharge and Pulse Cycle Tests for Lithium-Ion Batteries

Author

Listed:
  • Shasha Deng

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China)

  • Kuining Li

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China)

  • Yi Xie

    (School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Cunxue Wu

    (Chongqing Chang’an New Energy Vehicle Technology Co, Ltd., Chongqing 401120, China)

  • Pingzhong Wang

    (Chongqing Chang’an New Energy Vehicle Technology Co, Ltd., Chongqing 401120, China)

  • Miao Yu

    (Chongqing Chang’an New Energy Vehicle Technology Co, Ltd., Chongqing 401120, China)

  • Bo Li

    (School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Jintao Zheng

    (School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

Abstract

A battery thermal management system (BTMS) ensures that batteries operate efficiently within a suitable temperature range and maintains the temperature uniformity across the battery. A strict requirement of the BTMS is that increases in the battery discharge rate necessitate an increased battery heat dissipation. The advantages of heat pipes (HPs) include a high thermal conductivity, flexibility, and small size, which can be utilized in BTMSs. This paper experimentally examines a BTMS using HPs in combination with an aluminum plate to increase the uniformity in the surface temperature of the battery. The examined system with high discharge rates of 50, 75, and 100 A is used to determine its effects on the system temperature. The results are compared with those for HPs without fins and in ambient conditions. At a 100 A discharge current, the increase in battery temperature using the heat pipe with fins (HPWF) method is 4.8 °C lower than for natural convection, and the maximum temperature difference between the battery surfaces is 1.7 °C and 6.0 °C. The pulse circulation experiment was designed considering that the battery operates with a pulse discharge and temperature hysteresis. The depth of discharge is also considered, and the states-of-charge (SOC) values were 0.2, 0.5, and 0.8. The results of the two heat dissipation methods are compared, and the optimal heat dissipation structure is obtained by analyzing the experimental results. The results show that when the ambient temperature is 37 °C, differences in the SOC do not affect the battery temperature. In addition, the HPWF, HP, and natural convection methods reached stable temperatures of 40.8, 44.3, and the 48.1 °C, respectively the high temperature exceeded the battery operating temperature range.

Suggested Citation

  • Shasha Deng & Kuining Li & Yi Xie & Cunxue Wu & Pingzhong Wang & Miao Yu & Bo Li & Jintao Zheng, 2019. "Heat Pipe Thermal Management Based on High-Rate Discharge and Pulse Cycle Tests for Lithium-Ion Batteries," Energies, MDPI, vol. 12(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3143-:d:258025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    2. Ri-Guang Chi & Seok-Ho Rhi, 2019. "Oscillating Heat Pipe Cooling System of Electric Vehicle’s Li-Ion Batteries with Direct Contact Bottom Cooling Mode," Energies, MDPI, vol. 12(9), pages 1-14, May.
    3. Shah, K. & McKee, C. & Chalise, D. & Jain, A., 2016. "Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes," Energy, Elsevier, vol. 113(C), pages 852-860.
    4. Sarafraz, M.M. & Pourmehran, O. & Yang, B. & Arjomandi, M., 2019. "Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids," Renewable Energy, Elsevier, vol. 136(C), pages 884-895.
    5. Gourdo, L. & Fatnassi, H. & Tiskatine, R. & Wifaya, A. & Demrati, H. & Aharoune, A. & Bouirden, L., 2019. "Solar energy storing rock-bed to heat an agricultural greenhouse," Energy, Elsevier, vol. 169(C), pages 206-212.
    6. Yalian Yang & Xiaosong Hu & Datong Qing & Fangyuan Chen, 2013. "Arrhenius Equation-Based Cell-Health Assessment: Application to Thermal Energy Management Design of a HEV NiMH Battery Pack," Energies, MDPI, vol. 6(5), pages 1-17, May.
    7. Jung, Eui Guk & Boo, Joon Hong, 2014. "Thermal numerical model of a high temperature heat pipe heat exchanger under radiation," Applied Energy, Elsevier, vol. 135(C), pages 586-596.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. June-Seok Lee & Ui-Min Choi, 2019. "Comparison of Heat-Pipe Cooling System Design Processes in Railway Propulsion Inverter Considering Power Module Reliability," Energies, MDPI, vol. 12(24), pages 1-20, December.
    2. Chuanwei Zhang & Zhan Xia & Bin Wang & Huaibin Gao & Shangrui Chen & Shouchao Zong & Kunxin Luo, 2020. "A Li-Ion Battery Thermal Management System Combining a Heat Pipe and Thermoelectric Cooler," Energies, MDPI, vol. 13(4), pages 1-15, February.
    3. Chuanwei Zhang & Zhan Xia & Huaibin Gao & Jianping Wen & Shangrui Chen & Meng Dang & Sujing Gu & Jianing Zhang, 2020. "A Coolant Circulation Cooling System Combining Aluminum Plates and Copper Rods for Li-Ion Battery Pack," Energies, MDPI, vol. 13(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    2. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    3. Sarafraz, M.M. & Safaei, M.R., 2019. "Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension," Renewable Energy, Elsevier, vol. 142(C), pages 364-372.
    4. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    5. Qilu Chen & Yutao Shi & Zhi Zhuang & Li Weng & Chengjun Xu & Jianqiu Zhou, 2021. "Numerical Analysis of Liquid–Liquid Heat Pipe Heat Exchanger Based on a Novel Model," Energies, MDPI, vol. 14(3), pages 1-19, January.
    6. Martin Henke & Getu Hailu, 2020. "Thermal Management of Stationary Battery Systems: A Literature Review," Energies, MDPI, vol. 13(16), pages 1-16, August.
    7. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    8. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    9. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    11. Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.
    12. Xiaobin Hong & Nianzhi Li & Jinheng Feng & Qingzhao Kong & Guixiong Liu, 2015. "Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography," Energies, MDPI, vol. 8(2), pages 1-23, January.
    13. Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
    14. Safdari, Mojtaba & Ahmadi, Rouhollah & Sadeghzadeh, Sadegh, 2020. "Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management," Energy, Elsevier, vol. 193(C).
    15. Gad, Ramadan & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Performance evaluation of direct and indirect thermal regulation of low concentrated (via compound parabolic collector) solar panel using phase change material-flat heat pipe cooling system," Energy, Elsevier, vol. 274(C).
    16. Saedi, Ali & Jahangiri, Ali & Ameri, Mohammad & Asadi, Farzad, 2022. "Feasibility study and 3E analysis of blowdown heat recovery in a combined cycle power plant for utilization in Organic Rankine Cycle and greenhouse heating," Energy, Elsevier, vol. 260(C).
    17. Wang, Wei-Wei & Zhang, Hong-Liang & Song, Yong-Juan & Song, Jia-Wei & Shi, Dun-Ke & Zhao, Fu-Yun & Cai, Yang, 2022. "Fluid flow and thermal performance of the pulsating heat pipes facilitated with solar collectors: Experiments, theories and GABPNN machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1533-1547.
    18. Ouammi, Ahmed, 2021. "Model predictive control for optimal energy management of connected cluster of microgrids with net zero energy multi-greenhouses," Energy, Elsevier, vol. 234(C).
    19. Zhao, Rui & Gu, Junjie & Liu, Jie, 2017. "Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design," Energy, Elsevier, vol. 135(C), pages 811-822.
    20. Humphrey ADUN & Mustapha Mukhtar & Micheal Adedeji & Terfa Agwa & Kefas Hyelda Ibrahim & Olusola Bamisile & Mustafa Dagbasi, 2021. "Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids," Energies, MDPI, vol. 14(15), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3143-:d:258025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.