IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p589-d486123.html
   My bibliography  Save this article

Numerical Analysis of Liquid–Liquid Heat Pipe Heat Exchanger Based on a Novel Model

Author

Listed:
  • Qilu Chen

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 210000, China)

  • Yutao Shi

    (School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210000, China)

  • Zhi Zhuang

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 210000, China)

  • Li Weng

    (School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210000, China)

  • Chengjun Xu

    (School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210000, China)

  • Jianqiu Zhou

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 210000, China)

Abstract

Heat pipe heat exchangers (HPHEXs) are widely used in various industries. In this paper, a novel model of a liquid–liquid heat pipe heat exchanger in a countercurrent manner is established by considering the evaporation and condensation thermal resistances inside the heat pipes (HPs). The discrete method is added to the HPHEX model to determine the thermal resistances of the HPs and the temperature change trend of the heat transfer fluid in the HPHEX. The established model is verified by the HPHEX structure and experimental data in the existing literature and demonstrates numerical results that agree with the experimental data to within a 5% error. With the current model, the investigation compares the effectiveness and minimum vapor temperature of the HPHEX with three types of HP diameters, different mass flow rates, and different H * values. For HPs with a diameter of 36 mm, the effectiveness of each is improved by about 0.018 to 0.029 compared to HPs with a diameter of 28 mm. The results show that the current model can predict the temperature change trend of the HPHEX well; in addition, the effects of different structures on the effectiveness and minimum vapor temperature are obtained, which improve the performance of the HPHEX.

Suggested Citation

  • Qilu Chen & Yutao Shi & Zhi Zhuang & Li Weng & Chengjun Xu & Jianqiu Zhou, 2021. "Numerical Analysis of Liquid–Liquid Heat Pipe Heat Exchanger Based on a Novel Model," Energies, MDPI, vol. 14(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:589-:d:486123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Hongting & Yin, Lihui & Shen, Xiaopeng & Lu, Wenqian & Sun, Yuexia & Zhang, Yufeng & Deng, Na, 2016. "Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery," Applied Energy, Elsevier, vol. 169(C), pages 177-186.
    2. Ri-Guang Chi & Seok-Ho Rhi, 2019. "Oscillating Heat Pipe Cooling System of Electric Vehicle’s Li-Ion Batteries with Direct Contact Bottom Cooling Mode," Energies, MDPI, vol. 12(9), pages 1-14, May.
    3. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Calautit, John Kaiser, 2014. "Passive energy recovery from natural ventilation air streams," Applied Energy, Elsevier, vol. 113(C), pages 127-140.
    4. Rafal Andrzejczyk, 2018. "Experimental Investigation of the Thermal Performance of a Wickless Heat Pipe Operating with Different Fluids: Water, Ethanol, and SES36. Analysis of Influences of Instability Processes at Working Ope," Energies, MDPI, vol. 12(1), pages 1-28, December.
    5. Pulat, E. & Etemoglu, A.B. & Can, M., 2009. "Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 663-672, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Piotr Kuryło & Filip Mikołajczyk & Krystian Kurowski & Sławomir Pochwała & Andrzej Obraniak & Jacek Stelmach & Grzegorz Wielgosiński & Justyna Czerwińska , 2021. "Analysis and Evaluation of Heat Pipe Efficiency to Reduce Low Emission with the Use of Working Agents R134A, R404A and R407C, R410A," Energies, MDPI, vol. 14(7), pages 1-29, March.
    2. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Filip Mikołajczyk, 2021. "Numerical Model of Heat Pipes as an Optimization Method of Heat Exchangers," Energies, MDPI, vol. 14(22), pages 1-38, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, En & He, Ya-Ling & Tao, Wen-Quan, 2017. "Research on a new type waste heat recovery gravity heat pipe exchanger," Applied Energy, Elsevier, vol. 188(C), pages 586-594.
    2. Hervas-Blasco, Estefanía & Pitarch, Miquel & Navarro-Peris, Emilio & Corberán, José M., 2017. "Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers," Energy, Elsevier, vol. 127(C), pages 558-570.
    3. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
    4. Lian Zhang & Yu Feng Zhang, 2016. "Research on Heat Recovery Technology for Reducing the Energy Consumption of Dedicated Ventilation Systems: An Application to the Operating Model of a Laboratory," Energies, MDPI, vol. 9(1), pages 1-20, January.
    5. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    6. Kandilli, Canan & Koclu, Aytac, 2011. "Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4424-4431.
    7. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    8. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    9. Lorenzo Ciappi & Daniele Fiaschi & Giampaolo Manfrida & Simone Salvadori & Jacek Smolka & Lorenzo Talluri, 2019. "Heat Recovery for a Textile Stenter: CFD Analysis of Air Curtain Benefits," Energies, MDPI, vol. 12(3), pages 1-22, February.
    10. El-Behery, Samy M. & Hussien, A.A. & Kotb, H. & El-Shafie, Mostafa, 2017. "Performance evaluation of industrial glass furnace regenerator," Energy, Elsevier, vol. 119(C), pages 1119-1130.
    11. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    12. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    13. Juyeong Seo & Haneul Mun & Jae Yun Shim & Seok Il Hong & Hee Dong Lee & Inkyu Lee, 2022. "Advanced Design of Integrated Heat Recovery and Supply System Using Heated Water Storage for Textile Dyeing Process," Energies, MDPI, vol. 15(19), pages 1-16, October.
    14. O’Connor, Dominic & Calautit, John Kaiser S. & Hughes, Ben Richard, 2016. "A review of heat recovery technology for passive ventilation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1481-1493.
    15. Luca Cattani & Matteo Malavasi & Fabio Bozzoli & Valerio D’Alessandro & Luca Giammichele, 2023. "Experimental Analysis of an Innovative Electrical Battery Thermal Management System," Energies, MDPI, vol. 16(13), pages 1-17, June.
    16. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
    17. Calautit, John Kaiser & Hughes, Ben Richard & Shahzad, Sally Salome, 2015. "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices," Renewable Energy, Elsevier, vol. 83(C), pages 85-99.
    18. Ngai, E.W.T. & To, Chester K.M. & Ching, Vincent S.M. & Chan, L.K. & Lee, Maggie C.M. & Choi, Y.S. & Chai, P.Y.F., 2012. "Development of the conceptual model of energy and utility management in textile processing: A soft systems approach," International Journal of Production Economics, Elsevier, vol. 135(2), pages 607-617.
    19. Grzegorz Górecki & Marcin Łęcki & Artur Norbert Gutkowski & Dariusz Andrzejewski & Bartosz Warwas & Michał Kowalczyk & Artur Romaniak, 2021. "Experimental and Numerical Study of Heat Pipe Heat Exchanger with Individually Finned Heat Pipes," Energies, MDPI, vol. 14(17), pages 1-26, August.
    20. Ramadan, M. & Khaled, M. & El Hage, H. & Harambat, F. & Peerhossaini, H., 2016. "Effect of air temperature non-uniformity on water–air heat exchanger thermal performance – Toward innovative control approach for energy consumption reduction," Applied Energy, Elsevier, vol. 173(C), pages 481-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:589-:d:486123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.