IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp1210-1230.html
   My bibliography  Save this article

Heat pipe based municipal waste treatment unit for home energy recovery

Author

Listed:
  • Jouhara, H.
  • Nannou, T.K.
  • Anguilano, L.
  • Ghazal, H.
  • Spencer, N.

Abstract

A heat pipe based pyrolysis chamber has been developed and tested as an efficient, cost effective and space saving municipal waste treatment unit. The performance of the chamber was evaluated based on the temperature distributions inside the chamber, its electricity consumption and the chemical characteristics of the final pyrolysis products (bio-chars and pyro-oils) obtained from the process and validated by three test runs. In all the three tests, the type of waste treated was municipal waste obtained from households. In addition, special cases of challenging waste configurations, such as mixed domestic plastics and PVC are reported. The chemical analysis of the pyrolysis and the ash residues from the municipal solid waste showed no toxic elements in their composition. The main component of the char was calcium, the fluid oil obtained from the initial stages of pyrolysis had a similar composition to that of water, while the dense oil produced during the final stage of the process showed traces of iron and a potential composition match to commercial additive oils. The chemical analysis of the chars and ash obtained from the mixed domestic waste showed no toxicity for the mixed plastic char but a potential toxicity of the PVC char due to the existence of lead and chlorine. Calculations regarding the coefficient of performance (COP) of the heat pipe based pyrolysis unit indicated that the COP decreased with the increase of moisture content of the waste stream. For 0% moisture content in the waste stream the COP of the unit was 9.4 and the carbon footprint of the unit was 0.0782 kg CO2e per kg of treatment. On the other hand, for a maximum moisture content of 100% the COP was 0.53 and the CO2 emissions were 0.3873 kg CO2e per kg of treatment.

Suggested Citation

  • Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1210-1230
    DOI: 10.1016/j.energy.2017.02.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217302189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    2. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    3. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    4. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    5. Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.
    6. Amini, Amir & Miller, Jeremy & Jouhara, Hussam, 2017. "An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers," Energy, Elsevier, vol. 136(C), pages 163-172.
    7. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    8. Pei-dong, Zhang & Guomei, Jia & Gang, Wang, 2007. "Contribution to emission reduction of CO2 and SO2 by household biogas construction in rural China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1903-1912, October.
    9. Thornley, Patricia & Upham, Paul & Huang, Ye & Rezvani, Sina & Brammer, John & Rogers, John, 2009. "Integrated assessment of bioelectricity technology options," Energy Policy, Elsevier, vol. 37(3), pages 890-903, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jouhara, H. & Czajczyńska, D. & Ghazal, H. & Krzyżyńska, R. & Anguilano, L. & Reynolds, A.J. & Spencer, N., 2017. "Municipal waste management systems for domestic use," Energy, Elsevier, vol. 139(C), pages 485-506.
    2. Mroue, H. & Ramos, J.B. & Wrobel, L.C. & Jouhara, H., 2017. "Performance evaluation of a multi-pass air-to-water thermosyphon-based heat exchanger," Energy, Elsevier, vol. 139(C), pages 1243-1260.
    3. Kim, Jiwon & Park, Chanyeong & Park, Hoyoung & Han, Jeehoon & Lee, Jechan & Kim, Sung-Kon, 2022. "Upcycling of cattle manure for simultaneous energy recovery and supercapacitor electrode production," Energy, Elsevier, vol. 258(C).
    4. Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).
    5. Malinauskaite, J. & Jouhara, H., 2019. "The trilemma of waste-to-energy: A multi-purpose solution," Energy Policy, Elsevier, vol. 129(C), pages 636-645.
    6. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).
    2. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Jouhara, Hussam & Bertrand, Delpech & Axcell, Brian & Montorsi, Luca & Venturelli, Matteo & Almahmoud, Sulaiman & Milani, Massimo & Ahmad, Lujean & Chauhan, Amisha, 2021. "Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery," Energy, Elsevier, vol. 223(C).
    4. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    5. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    6. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    7. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    8. Essa, Mohamed A. & Talaat, M. & Amer, Abdalla & Farahat, M.A., 2021. "Enhancing the photovoltaic system efficiency using porous metallic media integrated with phase change material," Energy, Elsevier, vol. 225(C).
    9. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    10. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    11. Gad, Ramadan & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Performance evaluation of direct and indirect thermal regulation of low concentrated (via compound parabolic collector) solar panel using phase change material-flat heat pipe cooling system," Energy, Elsevier, vol. 274(C).
    12. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    13. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    14. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    15. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    16. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    17. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    18. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    19. Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
    20. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1210-1230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.