IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipap275-289.html
   My bibliography  Save this article

Thermal characteristics of the combined flat plate heat receiver in solar power tower plant

Author

Listed:
  • Zhou, Ruiwen
  • Ling, Xiang
  • Peng, Hao
  • Yang, Lin

Abstract

This study presents a combined flat plate heat receiver (FPHR) for a solar power tower plant. Four flat plate heat pipes (FPHPs) as heat transfer units are homogeneously enclosed in a cavity of 150° constituting the combined FPHR. The start-up characteristics of the FPHP were experimentally investigated and quantitatively analysed. In addition, the isothermal performance, heat transfer performance, stability under severe working conditions, and effect of non-condensable gas on the thermal characteristics were experimentally investigated. The results show that the heat transfer limits are not encountered during the start-up process and the FPHP heated on one-side surface could successfully start up. The continuum flow regime established in the FPHP results in a good isothermal characteristic and makes the output power to synchronously respond to the input power without delay under a heat flux fluctuation condition. It is also found that the FPHP possesses potential to inhibit the hotspots under non-uniform heating condition. Besides, the accumulated non-condensable gas would lead to the reduction of the heat transfer performance. The main conclusions drawn from this work will be helpful for further development of the heat receivers used in solar power tower systems.

Suggested Citation

  • Zhou, Ruiwen & Ling, Xiang & Peng, Hao & Yang, Lin, 2018. "Thermal characteristics of the combined flat plate heat receiver in solar power tower plant," Energy, Elsevier, vol. 165(PA), pages 275-289.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:275-289
    DOI: 10.1016/j.energy.2018.09.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218318371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Huili & Kong, Weibin & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency concentrated solar power plants need appropriate materials for high-temperature heat capture, conveying and storage," Energy, Elsevier, vol. 139(C), pages 52-64.
    2. Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
    3. Carrizosa, E. & Domínguez-Bravo, C. & Fernández-Cara, E. & Quero, M., 2015. "Optimization of multiple receivers solar power tower systems," Energy, Elsevier, vol. 90(P2), pages 2085-2093.
    4. Nithyanandam, K. & Pitchumani, R., 2014. "Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage," Energy, Elsevier, vol. 64(C), pages 793-810.
    5. Jouhara, H. & Chauhan, A. & Nannou, T. & Almahmoud, S. & Delpech, B. & Wrobel, L.C., 2017. "Heat pipe based systems - Advances and applications," Energy, Elsevier, vol. 128(C), pages 729-754.
    6. Liao, Zhirong & Xu, Chao & Ren, Yunxiu & Gao, Feng & Ju, Xing & Du, Xiaoze, 2018. "Thermal analysis of a conceptual loop heat pipe for solar central receivers," Energy, Elsevier, vol. 158(C), pages 709-718.
    7. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.
    8. Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
    9. Chernysheva, M.A. & Yushakova, S.I. & Maydanik, Yu.F., 2014. "Copper–water loop heat pipes for energy-efficient cooling systems of supercomputers," Energy, Elsevier, vol. 69(C), pages 534-542.
    10. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    11. Khamis Mansour, M., 2013. "Thermal analysis of novel minichannel-based solar flat-plate collector," Energy, Elsevier, vol. 60(C), pages 333-343.
    12. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    13. Diao, Yanhua & Kang, Yameng & Liang, Lin & Zhao, Yaohua & Zhu, Tingting, 2017. "Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays," Energy, Elsevier, vol. 138(C), pages 929-941.
    14. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khademi, Ramin & Razminia, Abolhassan & Shiryaev, Vladimir I., 2020. "Conjugate-mixed convection of nanofluid flow over an inclined flat plate in porous media," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    2. Liu, Changtian & Du, Mingsheng & Zhou, Ruiwen & Wang, Hang & Ling, Xiang & Hu, Yige, 2022. "Experimental investigation on thermal characteristics of a novel mesh flat-plate heat receiver in a solar power tower system," Energy, Elsevier, vol. 242(C).
    3. Yang, Lin & Ling, Xiang & Peng, Hao & Duan, LuanFang & Chen, Xiaoyi, 2019. "Starting characteristics of a novel high temperature flat heat pipe receiver in solar power tower plant based of“Flat-front”Startup model," Energy, Elsevier, vol. 183(C), pages 936-945.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    2. Liu, Changtian & Du, Mingsheng & Zhou, Ruiwen & Wang, Hang & Ling, Xiang & Hu, Yige, 2022. "Experimental investigation on thermal characteristics of a novel mesh flat-plate heat receiver in a solar power tower system," Energy, Elsevier, vol. 242(C).
    3. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
    4. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    5. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    6. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Conroy, Tim & Collins, Maurice N. & Fisher, James & Grimes, Ronan, 2018. "Thermal and mechanical analysis of a sodium-cooled solar receiver operating under a novel heliostat aiming point strategy," Applied Energy, Elsevier, vol. 230(C), pages 590-614.
    8. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    9. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    10. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    11. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    12. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Kim, Sunjin & Cho, Yeonjoo & Kim, Min Soo & Kim, Minsung, 2018. "Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators," Energy, Elsevier, vol. 147(C), pages 1216-1226.
    14. Lutsenko, Nickolay A. & Fetsov, Sergey S., 2020. "Effect of side walls shape on charging and discharging performance of thermal energy storages based on granular phase change materials," Renewable Energy, Elsevier, vol. 162(C), pages 466-477.
    15. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    16. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    17. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    18. Kuo, Chung-Feng Jeffrey & Yang, Pei-Chung & Umar, Mega Lazuardi & Lan, Wei-Lun, 2019. "A bifacial photovoltaic thermal system design with parameter optimization and performance beneficial validation," Applied Energy, Elsevier, vol. 247(C), pages 335-349.
    19. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2022. "Visualization experiment and numerical study of latent heat storage unit using micro-heat pipe arrays: Melting process," Energy, Elsevier, vol. 246(C).
    20. Yu, Qinghua & Tchuenbou-Magaia, Fideline & Al-Duri, Bushra & Zhang, Zhibing & Ding, Yulong & Li, Yongliang, 2018. "Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage," Applied Energy, Elsevier, vol. 211(C), pages 1190-1202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:275-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.