IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v38y2012i1p249-254.html
   My bibliography  Save this article

Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage

Author

Listed:
  • Li, Wei
  • Zhang, Xing-xiang
  • Wang, Xue-chen
  • Tang, Guo-yi
  • Shi, Hai-feng

Abstract

A series of MicroPCMs with gelatin-gum arabic shell, polyurethane shell and styrene-based copolymer shell were fabricated via complex coacervation, interfacial polymerization and suspension polymerization, respectively. Furthermore, a novel MicroPCMs with styrene-divinylbenzene copolymer as inner shell and polyurethane as outer shell was investigated, where styrene and divinybenzene were employed both as cosolvent and shell-forming monomers. Macrocapsules containing MicroPCMs with calcium alginate as matrixes were also prepared by piercing-solidifying incuber method. The morphology and structure of these microcapsules and macrocapsules were characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Fourier transform infrared spectroscopy (FTIR) was used to identify the chemical structure of different copolymer shells. The thermal differential scanning calorimetry (DSC) was employed to measure phase change temperature and enthalpy. In addition, the cross-section of MacroPCMs was characterized as well.

Suggested Citation

  • Li, Wei & Zhang, Xing-xiang & Wang, Xue-chen & Tang, Guo-yi & Shi, Hai-feng, 2012. "Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage," Energy, Elsevier, vol. 38(1), pages 249-254.
  • Handle: RePEc:eee:energy:v:38:y:2012:i:1:p:249-254
    DOI: 10.1016/j.energy.2011.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211007997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Thermal performance of a single basin solar still with PCM as a storage medium," Applied Energy, Elsevier, vol. 86(7-8), pages 1187-1195, July.
    2. Li, Wei & Song, Guolin & Tang, Guoyi & Chu, Xiaodong & Ma, Sude & Liu, Caifeng, 2011. "Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell," Energy, Elsevier, vol. 36(2), pages 785-791.
    3. Song, Guolin & Ma, Sude & Tang, Guoyi & Yin, Zhansong & Wang, Xiaowei, 2010. "Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide," Energy, Elsevier, vol. 35(5), pages 2179-2183.
    4. Kuznik, Frédéric & Virgone, Joseph, 2009. "Experimental assessment of a phase change material for wall building use," Applied Energy, Elsevier, vol. 86(10), pages 2038-2046, October.
    5. Tian, Y. & Zhao, C.Y., 2011. "A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals," Energy, Elsevier, vol. 36(9), pages 5539-5546.
    6. Fang, Guiyin & Li, Hui & Chen, Zhi & Liu, Xu, 2010. "Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials," Energy, Elsevier, vol. 35(12), pages 4622-4626.
    7. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2010. "Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry," Energy, Elsevier, vol. 35(6), pages 2688-2693.
    8. Kim, Ki-bum & Choi, Kyung-wook & Kim, Young-jin & Lee, Ki-hyung & Lee, Kwan-soo, 2010. "Feasibility study on a novel cooling technique using a phase change material in an automotive engine," Energy, Elsevier, vol. 35(1), pages 478-484.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Jinhua & Zhang, Ruizhi & Yu, Baisong & Che, Yuanjun & Wu, Zhansheng & Zhang, Xing & Peng, Zhigang, 2022. "Preparation, characterization, investigation of phase change micro-encapsulated thermal control material used for energy storage and temperature regulation in deep-water oil and gas development," Energy, Elsevier, vol. 239(PD).
    2. Al-Shannaq, Refat & Kurdi, Jamal & Al-Muhtaseb, Shaheen & Dickinson, Michelle & Farid, Mohammed, 2015. "Supercooling elimination of phase change materials (PCMs) microcapsules," Energy, Elsevier, vol. 87(C), pages 654-662.
    3. Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
    4. Li, Min & Chen, Meirong & Wu, Zhishen, 2014. "Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube," Applied Energy, Elsevier, vol. 127(C), pages 166-171.
    5. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    6. Jacob, Rhys & Bruno, Frank, 2015. "Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 79-87.
    7. Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
    8. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
    9. Hussain, Abid & Tso, C.Y. & Chao, Christopher Y.H., 2016. "Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite," Energy, Elsevier, vol. 115(P1), pages 209-218.
    10. Geng, Xiaoye & Li, Wei & Wang, Yu & Lu, Jiangwei & Wang, Jianping & Wang, Ning & Li, Jianjie & Zhang, Xingxiang, 2018. "Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing," Applied Energy, Elsevier, vol. 217(C), pages 281-294.
    11. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    12. Han, Pengju & Lu, Lixin & Qiu, Xiaolin & Tang, Yali & Wang, Jun, 2015. "Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage," Energy, Elsevier, vol. 91(C), pages 531-539.
    13. Kumarasamy, Karthikeyan & An, Jinliang & Yang, Jinglei & Yang, En-Hua, 2017. "Novel CFD-based numerical schemes for conduction dominant encapsulated phase change materials (EPCM) with temperature hysteresis for thermal energy storage applications," Energy, Elsevier, vol. 132(C), pages 31-40.
    14. Tahan Latibari, Sara & Mehrali, Mohammad & Mehrali, Mehdi & Afifi, Amalina Binti Muhammad & Mahlia, Teuku Meurah Indra & Akhiani, Amir Reza & Metselaar, Hendrik Simon Cornelis, 2015. "Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method," Energy, Elsevier, vol. 85(C), pages 635-644.
    15. Safari, A. & Saidur, R. & Sulaiman, F.A. & Xu, Yan & Dong, Joe, 2017. "A review on supercooling of Phase Change Materials in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 905-919.
    16. Yin, Dezhong & Ma, Li & Liu, Jinjie & Zhang, Qiuyu, 2014. "Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell," Energy, Elsevier, vol. 64(C), pages 575-581.
    17. Tang, Xiaofen & Li, Wei & Zhang, Xingxiang & Shi, Haifeng, 2014. "Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage," Energy, Elsevier, vol. 68(C), pages 160-166.
    18. Li, Wenhong & Song, Guolin & Li, Shuhua & Yao, Youwei & Tang, Guoyi, 2014. "Preparation and characterization of novel MicroPCMs (microencapsulated phase-change materials) with hybrid shells via the polymerization of two alkoxy silanes," Energy, Elsevier, vol. 70(C), pages 298-306.
    19. He, Yayue & Li, Wei & Han, Na & Wang, Jianping & Zhang, Xingxiang, 2019. "Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor," Applied Energy, Elsevier, vol. 247(C), pages 615-629.
    20. Yuan, Shunpan & Yan, Rui & Ren, Bibo & Du, Zongliang & Cheng, Xu & Du, Xiaosheng & Wang, Haibo, 2021. "Robust, double-layered phase-changing microcapsules with superior solar-thermal conversion capability and extremely high energy storage density for efficient solar energy storage," Renewable Energy, Elsevier, vol. 180(C), pages 725-733.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
    2. Zhang, Lei & Zhu, Jiaoqun & Zhou, Weibing & Wang, Jun & Wang, Yan, 2012. "Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials," Energy, Elsevier, vol. 39(1), pages 294-302.
    3. Han, Pengju & Lu, Lixin & Qiu, Xiaolin & Tang, Yali & Wang, Jun, 2015. "Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage," Energy, Elsevier, vol. 91(C), pages 531-539.
    4. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    5. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    6. Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
    7. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    8. Joulin, Annabelle & Younsi, Zohir & Zalewski, Laurent & Lassue, Stéphane & Rousse, Daniel R. & Cavrot, Jean-Paul, 2011. "Experimental and numerical investigation of a phase change material: Thermal-energy storage and release," Applied Energy, Elsevier, vol. 88(7), pages 2454-2462, July.
    9. Li, Wei & Song, Guolin & Tang, Guoyi & Chu, Xiaodong & Ma, Sude & Liu, Caifeng, 2011. "Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell," Energy, Elsevier, vol. 36(2), pages 785-791.
    10. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    11. Wei, Haiting & Xie, Xiuzhen & Li, Xiangqi & Lin, Xingshui, 2016. "Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material," Applied Energy, Elsevier, vol. 178(C), pages 616-623.
    12. Tang, Xiaofen & Li, Wei & Zhang, Xingxiang & Shi, Haifeng, 2014. "Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage," Energy, Elsevier, vol. 68(C), pages 160-166.
    13. Yin, Dezhong & Ma, Li & Liu, Jinjie & Zhang, Qiuyu, 2014. "Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell," Energy, Elsevier, vol. 64(C), pages 575-581.
    14. Zhou, D. & Shire, G.S.F. & Tian, Y., 2014. "Parametric analysis of influencing factors in Phase Change Material Wallboard (PCMW)," Applied Energy, Elsevier, vol. 119(C), pages 33-42.
    15. Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
    16. Jamekhorshid, A. & Sadrameli, S.M. & Farid, M., 2014. "A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 531-542.
    17. Amini-Manesh, Navid & Basu, Saptarshi & Kumar, Ranganathan, 2011. "Modeling of a reacting nanofilm on a composite substrate," Energy, Elsevier, vol. 36(3), pages 1688-1697.
    18. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    19. Paneliya, Sagar & Khanna, Sakshum & Utsav, & Singh, Ayush Pratap & Patel, Yash Kumar & Vanpariya, Anjali & Makani, Nisha Hiralal & Banerjee, Rupak & Mukhopadhyay, Indrajit, 2021. "Core shell paraffin/silica nanocomposite: A promising phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 591-599.
    20. Mehrali, Mohammad & Latibari, Sara Tahan & Mehrali, Mehdi & Indra Mahlia, Teuku Meurah & Cornelis Metselaar, Hendrik Simon, 2013. "Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials," Energy, Elsevier, vol. 58(C), pages 628-634.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:38:y:2012:i:1:p:249-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.