IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i7-8p1187-1195.html
   My bibliography  Save this article

Thermal performance of a single basin solar still with PCM as a storage medium

Author

Listed:
  • El-Sebaii, A.A.
  • Al-Ghamdi, A.A.
  • Al-Hazmi, F.S.
  • Faidah, Adel S.

Abstract

Transient mathematical models are presented for a single slope-single basin solar still with and without phase change material (PCM) under the basin liner of the still. Analytical expressions for temperatures of the still elements and the PCM have been obtained. The still performance has been investigated by computer simulation. Numerical calculations have been carried out, using stearic acid as a PCM, on typical summer and winter days in Jeddah (lat. 21° 42' N, long. 39° 11' E), Saudi Arabia. Effect of mass of the PCM (mpcm) on the daylight Pdl, overnight Pon and daily productivity Pd and efficiency [eta]d of the still for different masses of basin water mw has been investigated. It is found that Pdl decreases as mpcm increases; but Pon and Pd increase significantly with an increase of mpcm due to the increased amount of the heat stored within the PCM. During discharging of the PCM, the convective heat transfer coefficient from the basin liner to basin water is doubled; thus, the evaporative heat transfer coefficient is increased by 27% on using 3.3 cm of stearic acid beneath the basin liner. Therefore, on a summer day, a value of Pd of 9.005 (kg/m2 day) with a daily efficiency of 85.3% has been obtained compared to 4.998 (kg/m2 day) when the still is used without the PCM. The PCM is more effective for lower masses of basin water on winter season.

Suggested Citation

  • El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Thermal performance of a single basin solar still with PCM as a storage medium," Applied Energy, Elsevier, vol. 86(7-8), pages 1187-1195, July.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1187-1195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00263-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadineni, S.B. & Hurt, R. & Halford, C.K. & Boehm, R.F., 2008. "Theory and experimental investigation of a weir-type inclined solar still," Energy, Elsevier, vol. 33(1), pages 71-80.
    2. Namprakai, P. & Hirunlabh, J., 2007. "Theoretical and experimental studies of an ethanol basin solar still," Energy, Elsevier, vol. 32(12), pages 2376-2384.
    3. Fath, Hassan E.S., 1998. "Technical assessment of solar thermal energy storage technologies," Renewable Energy, Elsevier, vol. 14(1), pages 35-40.
    4. El-Sebaii, A.A & Aboul-Enein, S & Ramadan, M.R.I & El-Bialy, E, 2000. "Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber," Energy, Elsevier, vol. 25(1), pages 35-49.
    5. Ali Samee, Muhammad & Mirza, Umar K. & Majeed, Tariq & Ahmad, Nasir, 2007. "Design and performance of a simple single basin solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 543-549, April.
    6. Aboul-Enein, S. & El-Sebaii, A.A. & El-Bialy, E., 1998. "Investigation of a single-basin solar still with deep basins," Renewable Energy, Elsevier, vol. 14(1), pages 299-305.
    7. Chen, C.R. & Sharma, Atul & Tyagi, S.K. & Buddhi, D., 2008. "Numerical heat transfer studies of PCMs used in a box-type solar cooker," Renewable Energy, Elsevier, vol. 33(5), pages 1121-1129.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    2. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    3. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    4. Kabeel, A.E. & Hamed, A.M. & El-Agouz, S.A., 2010. "Cost analysis of different solar still configurations," Energy, Elsevier, vol. 35(7), pages 2901-2908.
    5. Sebastian, Geo & Thomas, Shijo, 2021. "Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions," Energy, Elsevier, vol. 214(C).
    6. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    7. Kumar R, Reji & Pandey, A.K. & Samykano, M. & Aljafari, Belqasem & Ma, Zhenjun & Bhattacharyya, Suvanjan & Goel, Varun & Ali, Imtiaz & Kothari, Richa & Tyagi, V.V., 2022. "Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.
    9. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    10. Ranjan, K.R. & Kaushik, S.C., 2013. "Energy, exergy and thermo-economic analysis of solar distillation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 709-723.
    11. Kalidasa Murugavel, K. & Anburaj, P. & Samuel Hanson, R. & Elango, T., 2013. "Progresses in inclined type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 364-377.
    12. Kabeel, A.E., 2009. "Performance of solar still with a concave wick evaporation surface," Energy, Elsevier, vol. 34(10), pages 1504-1509.
    13. Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
    14. Rahbar, N. & Esfahani, J.A., 2013. "Productivity estimation of a single-slope solar still: Theoretical and numerical analysis," Energy, Elsevier, vol. 49(C), pages 289-297.
    15. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    16. Milad Setareh & Mohammad Reza Assari & Hassan Basirat Tabrizi & Mohammad Alizadeh, 2024. "Performance of a stepped solar still using porous materials experimentally," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28519-28538, November.
    17. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    18. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Jahangiri Mamouri, S. & Gholami Derami, H. & Ghiasi, M. & Shafii, M.B. & Shiee, Z., 2014. "Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still," Energy, Elsevier, vol. 75(C), pages 501-507.
    20. Panomwan Na Ayuthaya, Rattanapol & Namprakai, Pichai & Ampun, Wirut, 2013. "The thermal performance of an ethanol solar still with fin plate to increase productivity," Renewable Energy, Elsevier, vol. 54(C), pages 227-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1187-1195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.