IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v165y2022ics1364032122005068.html
   My bibliography  Save this article

Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage

Author

Listed:
  • Kumar R, Reji
  • Pandey, A.K.
  • Samykano, M.
  • Aljafari, Belqasem
  • Ma, Zhenjun
  • Bhattacharyya, Suvanjan
  • Goel, Varun
  • Ali, Imtiaz
  • Kothari, Richa
  • Tyagi, V.V.

Abstract

The demand for fresh water in today's world is rising continually due to the increase in population and rise in industrial developments. Solar Desalination is one of the sustainable and renewable ways to convert brackish or salty water into fresh water. The use of solar desalination contributes towards decarbonization, mitigation of CO2 and other adverse global warming effect, and it contributes to the Sustainable Development Goals (SDG) number 6, 7, and 13. The solar energy-driven phase change materials (PCM) integrated solar desalination system simultaneously produces fresh water, and the excess heat energy can be stored in the PCM. The foremost objective of this review is to analyze the recent developments of solar-driven active and passive solar still (SS) with thermal energy storage. Also, this review analyzes the effect of wind, depth of water, the thickness of PCM, and intentions to fill the gap in the available reviews on distillate production and highlights the improvement techniques of various active and passive SS with and without PCM. Furthermore, it highlights the effect of nanoparticles enhanced PCM integrated solar still with different absorber designs and configurations. The reviews shows that the maximum freshwater production is 13.62, 15.39, and 18.6 L/m2day for Evacuated tube collector (ETC) integrated solar still, parabolic trough collector integrated solar still, solar still with PCM-graphite nanoparticles, and solar still with PCM-graphene oxide nanoparticles, respectively. The information helps identify the most appropriate combinations of solar-driven desalination systems with PCM to fulfil the SDG for small and large applications.

Suggested Citation

  • Kumar R, Reji & Pandey, A.K. & Samykano, M. & Aljafari, Belqasem & Ma, Zhenjun & Bhattacharyya, Suvanjan & Goel, Varun & Ali, Imtiaz & Kothari, Richa & Tyagi, V.V., 2022. "Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122005068
    DOI: 10.1016/j.rser.2022.112611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122005068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panchal, Hitesh N. & Patel, Sanjay, 2017. "An extensive review on different design and climatic parameters to increase distillate output of solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 750-758.
    2. Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
    3. Singh, D.B., 2018. "Energy metrics analysis of N identical evacuated tubular collectors integrated single slope solar still," Energy, Elsevier, vol. 148(C), pages 546-560.
    4. Fang, Shibiao & Mu, Lin & Tu, Wenrong, 2021. "Application design and assessment of a novel small-decentralized solar distillation device based on energy, exergy, exergoeconomic, and enviroeconomic parameters," Renewable Energy, Elsevier, vol. 164(C), pages 1350-1363.
    5. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    6. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    7. Dutt, D. K. & Kumar, Ashok & Anand, J. D. & Tiwari, G. N., 1989. "Performance of a double-basin solar still in the presence of dye," Applied Energy, Elsevier, vol. 32(3), pages 207-223.
    8. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    9. Sadineni, S.B. & Hurt, R. & Halford, C.K. & Boehm, R.F., 2008. "Theory and experimental investigation of a weir-type inclined solar still," Energy, Elsevier, vol. 33(1), pages 71-80.
    10. Bhardwaj, R. & ten Kortenaar, M.V. & Mudde, R.F., 2015. "Maximized production of water by increasing area of condensation surface for solar distillation," Applied Energy, Elsevier, vol. 154(C), pages 480-490.
    11. Hassan, Hamdy & Yousef, Mohamed S. & Fathy, Mohamed & Ahmed, M. Salem, 2020. "Assessment of parabolic trough solar collector assisted solar still at various saline water mediums via energy, exergy, exergoeconomic, and enviroeconomic approaches," Renewable Energy, Elsevier, vol. 155(C), pages 604-616.
    12. Mahdi, N.Al, 1992. "Performance prediction of a multi-basin solar still," Energy, Elsevier, vol. 17(1), pages 87-93.
    13. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    14. Kabeel, A.E. & Abdelgaied, Mohamed & Eisa, Amr, 2019. "Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still," Renewable Energy, Elsevier, vol. 132(C), pages 119-128.
    15. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    17. Kumar, Ashok & Singh, Madan & Anand, J.D., 1989. "Transient performance of a double-basin solar still integrated with a heat exchanger," Energy, Elsevier, vol. 14(10), pages 643-652.
    18. Mousa, Hasan & Gujarathi, Ashish M., 2016. "Modeling and analysis the productivity of solar desalination units with phase change materials," Renewable Energy, Elsevier, vol. 95(C), pages 225-232.
    19. Srithar, K. & Rajaseenivasan, T. & Karthik, N. & Periyannan, M. & Gowtham, M., 2016. "Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator," Renewable Energy, Elsevier, vol. 90(C), pages 157-165.
    20. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    21. Rajaseenivasan, T. & Murugavel, K. Kalidasa & Elango, T. & Hansen, R. Samuel, 2013. "A review of different methods to enhance the productivity of the multi-effect solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 248-259.
    22. Goel, Varun & Kumar, Rajneesh & Bhattacharyya, Suvanjan & Tyagi, V.V. & Abusorrah, Abdullah M., 2021. "A comprehensive parametric investigation of hemispherical cavities on thermal performance and flow-dynamics in the triangular-duct solar-assisted air-heater," Renewable Energy, Elsevier, vol. 173(C), pages 896-912.
    23. Chen, C.R. & Sharma, Atul & Tyagi, S.K. & Buddhi, D., 2008. "Numerical heat transfer studies of PCMs used in a box-type solar cooker," Renewable Energy, Elsevier, vol. 33(5), pages 1121-1129.
    24. Vishwanath Kumar, P. & Kumar, Anil & Prakash, Om & Kaviti, Ajay Kumar, 2015. "Solar stills system design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 153-181.
    25. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Abdelhameed Ibrahim & El-Sayed M. El-kenawy & A. E. Kabeel & Faten Khalid Karim & Marwa M. Eid & Abdelaziz A. Abdelhamid & Sayed A. Ward & Emad M. S. El-Said & M. El-Said & Doaa Sami Khafaga, 2023. "Al-Biruni Earth Radius Optimization Based Algorithm for Improving Prediction of Hybrid Solar Desalination System," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    3. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Akkala, Siva Ram & Kaviti, Ajay Kumar & ArunKumar, T. & Sikarwar, Vineet Singh, 2021. "Progress on suspended nanostructured engineering materials powered solar distillation- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Nadal-Bach, Joel & Bruno, Joan Carles & Farnós, Joan & Rovira, Miquel, 2021. "Solar stills and evaporators for the treatment of agro-industrial liquid wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    6. Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Sebastian, Geo & Thomas, Shijo, 2021. "Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions," Energy, Elsevier, vol. 214(C).
    8. El-Sebaii, A.A. & El-Bialy, E., 2015. "Advanced designs of solar desalination systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1198-1212.
    9. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    10. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    11. Zanganeh, Peyman & Goharrizi, Ataallah Soltani & Ayatollahi, Shahab & Feilizadeh, Mehrzad & Dashti, Hossein, 2020. "Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study," Applied Energy, Elsevier, vol. 268(C).
    12. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    13. Kalidasa Murugavel, K. & Anburaj, P. & Samuel Hanson, R. & Elango, T., 2013. "Progresses in inclined type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 364-377.
    14. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    15. Han, Jingyang & Ji, Xu & Xu, Haiyang & Heng, Yuanyuan & Wang, Cong & Deng, Jia, 2020. "Solar vaporizing desalination by heat concentration," Renewable Energy, Elsevier, vol. 154(C), pages 201-208.
    16. He Fu & Min Dai & Hanwen Song & Xiaoting Hou & Fahid Riaz & Shuai Li & Ke Yang & Imran Ali & Changsheng Peng & Muhammad Sultan, 2021. "Updates on Evaporation and Condensation Methods for the Performance Improvement of Solar Stills," Energies, MDPI, vol. 14(21), pages 1-26, October.
    17. Omara, Z.M. & Abdullah, A.S. & Kabeel, A.E. & Essa, F.A., 2017. "The cooling techniques of the solar stills' glass covers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 176-193.
    18. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    20. Gang, Wu & Qichang, Yang & Hongfei, Zheng & Yi, Zhang & Hui, Fang & Rihui, Jin, 2019. "Direct utilization of solar linear Fresnel reflector on multi-effect eccentric horizontal tubular still with falling film," Energy, Elsevier, vol. 170(C), pages 170-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122005068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.