IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v138y2021ics1364032120308315.html
   My bibliography  Save this article

Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives

Author

Listed:
  • Arunkumar, T.
  • Wang, Jiaqiang
  • Denkenberger, D.

Abstract

Solar energy is a sustainable energy source with many applications. Desalination of ocean/wastewater with solar energy has attracted considerable interest worldwide. However, solar desalination is a slow process with poor efficiency. In order to improve performance, highly efficient photothermal absorbers have been introduced. The main objective of the present work is to investigate capillary flow driven high broadband (full solar spectrum) absorptivity nanostructured absorbers for sea/wastewater treatment. The recent development in porous and self-floatable nanomaterial-enriched absorbers have improved the evaporation process through high broadband solar absorptivity (>95%) and porosity (>99%). One motivation of the research is to link the researchers of traditional absorbers to research on advanced materials, so the results of low-efficiency capillary materials are compared with the highly efficient materials. The ions in the seawater, including Na+, Mg2+, K+, Ca2+ and other contaminants before and after desalination, are investigated. Further, the effectiveness, best applicable material, challenges and future projections are described. The advanced nanostructured photothermal absorbers have the potential of being the most suitable candidates to be used in solar desalination systems. More improvements are needed in the absorbers stabilities, salt-blocking, scalability, lack of toxicity and affordability for commercialization.

Suggested Citation

  • Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120308315
    DOI: 10.1016/j.rser.2020.110547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eliodoro Chiavazzo & Matteo Morciano & Francesca Viglino & Matteo Fasano & Pietro Asinari, 2018. "Passive solar high-yield seawater desalination by modular and low-cost distillation," Nature Sustainability, Nature, vol. 1(12), pages 763-772, December.
    2. Durkaieswaran, P. & Murugavel, K. Kalidasa, 2015. "Various special designs of single basin passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1048-1060.
    3. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    4. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    5. Wenbin Wang & Yusuf Shi & Chenlin Zhang & Seunghyun Hong & Le Shi & Jian Chang & Renyuan Li & Yong Jin & Chisiang Ong & Sifei Zhuo & Peng Wang, 2019. "Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    7. Choi, Soon-Ho, 2017. "Thermal type seawater desalination with barometric vacuum and solar energy," Energy, Elsevier, vol. 141(C), pages 1332-1349.
    8. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    9. Manikandan, V. & Shanmugasundaram, K. & Shanmugan, S. & Janarthanan, B. & Chandrasekaran, J., 2013. "Wick type solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 322-335.
    10. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    11. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    12. Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.
    13. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    14. Rajaseenivasan, T. & Murugavel, K. Kalidasa & Elango, T. & Hansen, R. Samuel, 2013. "A review of different methods to enhance the productivity of the multi-effect solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 248-259.
    15. Kyuyoung Bae & Gumin Kang & Suehyun K. Cho & Wounjhang Park & Kyoungsik Kim & Willie J. Padilla, 2015. "Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    16. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arunkumar, T. & Lim, Hyeong Woo & Lee, Sang Joon, 2022. "A review on efficiently integrated passive distillation systems for active solar steam evaporation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    3. Kumar R, Reji & Pandey, A.K. & Samykano, M. & Aljafari, Belqasem & Ma, Zhenjun & Bhattacharyya, Suvanjan & Goel, Varun & Ali, Imtiaz & Kothari, Richa & Tyagi, V.V., 2022. "Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Hassan, Hamdy & Ahmed, M. Salem & Fathy, Mohamed, 2019. "Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC)," Renewable Energy, Elsevier, vol. 135(C), pages 136-147.
    5. Arunkumar, T. & Lim, Hyeong Woo & Lee, Sang Joon, 2022. "A review on efficiently integrated passive distillation systems for active solar steam evaporation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    7. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    8. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    9. Han, Jingyang & Ji, Xu & Xu, Haiyang & Heng, Yuanyuan & Wang, Cong & Deng, Jia, 2020. "Solar vaporizing desalination by heat concentration," Renewable Energy, Elsevier, vol. 154(C), pages 201-208.
    10. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    11. Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).
    12. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    13. Yajie Hu & Hongyun Ma & Mingmao Wu & Tengyu Lin & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "A reconfigurable and magnetically responsive assembly for dynamic solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. A. Muthu Manokar & M. Vimala & Ravishankar Sathyamurthy & A. E. Kabeel & D. Prince Winston & Ali J. Chamkha, 2020. "Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4145-4167, June.
    16. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    17. Omara, Z.M. & Kabeel, A.E. & Abdullah, A.S., 2017. "A review of solar still performance with reflectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 638-649.
    18. Huang, Jian & He, Yurong & Chen, Meijie & Wang, Xinzhi, 2019. "Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber," Applied Energy, Elsevier, vol. 236(C), pages 244-252.
    19. Huang, Qichen & Liang, Xuechen & Yan, Chongyuan & Liu, Yizhen, 2021. "Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges," Applied Energy, Elsevier, vol. 283(C).
    20. Chen, W.L. & Xie, G., 2022. "Performance of multi-stage tubular solar still operating under vacuum," Renewable Energy, Elsevier, vol. 201(P2), pages 34-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120308315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.