IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp112-123.html
   My bibliography  Save this article

A comparison between passive and active PCM systems applied to buildings

Author

Listed:
  • Gholamibozanjani, Gohar
  • Farid, Mohammed

Abstract

The incorporation of phase change materials (PCMs) in buildings increases their thermal mass and hence improves thermal comfort through internal temperature stabilization. In this paper, the thermal performance of an active PCM system was compared with that of a passive system. Two identical test huts, each equipped with a control system were used to investigate the potential of passive and active systems for energy-saving and peak load shifting. One of the huts was equipped with PCM-impregnated wallboards, while the other hut was provided with active air-PCM heat storage units designed and fabricated at the University of Auckland. Both huts were cooled with an air conditioner or heated using both solar and electric heaters. For space cooling, the hut with active PCM consumed 8% more electricity to maintain comfort, although the energy storage capacity of PCM used was 50% less than that used in the active application. Over ten days in winter, the energy consumed in the hut provided with an active storage system was 22% less when both passive and active systems had the same amount of energy storage capacity. The investigation of peak load shifting showed 32% less in electricity cost when an active storage system was used.

Suggested Citation

  • Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:112-123
    DOI: 10.1016/j.renene.2020.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Yong & Wang, Tuo & Tang, Rui & Hu, Wanling & Guo, Jianxuan & Yang, Huijun & Zhang, Yun & Duan, Shijian, 2020. "Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity," Renewable Energy, Elsevier, vol. 150(C), pages 1047-1056.
    2. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M, 2016. "Application of weather forecast in conjunction with price-based method for PCM solar passive buildings – An experimental study," Applied Energy, Elsevier, vol. 163(C), pages 9-18.
    3. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    4. Devaux, Paul & Farid, Mohammed Mehdi, 2017. "Benefits of PCM underfloor heating with PCM wallboards for space heating in winter," Applied Energy, Elsevier, vol. 191(C), pages 593-602.
    5. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    6. Gholamibozanjani, Gohar & Tarragona, Joan & Gracia, Alvaro de & Fernández, Cèsar & Cabeza, Luisa F. & Farid, Mohammed M., 2018. "Model predictive control strategy applied to different types of building for space heating," Applied Energy, Elsevier, vol. 231(C), pages 959-971.
    7. Khanna, Sourav & Reddy, K.S. & Mallick, Tapas K., 2017. "Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions," Energy, Elsevier, vol. 133(C), pages 887-899.
    8. Li, Gang & Bi, Xiaoxuan & Feng, Guohui & Chi, Lan & Zheng, Xianfang & Liu, Xueting, 2020. "Phase change material Chinese Kang: Design and experimental performance study," Renewable Energy, Elsevier, vol. 150(C), pages 821-830.
    9. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    10. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    11. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    12. Gaur, Ankita & Ménézo, Christophe & Giroux--Julien, Stéphanie, 2017. "Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium," Renewable Energy, Elsevier, vol. 109(C), pages 168-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuhair Jastaneyah & Haslinda M. Kamar & Abdulrahman Alansari & Hakim Al Garalleh, 2023. "A Comparative Analysis of Standard and Nano-Structured Glass for Enhancing Heat Transfer and Reducing Energy Consumption Using Metal and Oxide Nanoparticles: A Review," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
    3. Shen, Yongliang & Liu, Shuli & Mazhar, Abdur Rehman & Han, Xiaojing & Yang, Liu & Yang, Xiu'e, 2021. "A review of solar-driven short-term low temperature heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    5. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    6. Erik Schmerse & Charles A. Ikutegbe & Amar Auckaili & Mohammed M. Farid, 2020. "Using PCM in Two Proposed Residential Buildings in Christchurch, New Zealand," Energies, MDPI, vol. 13(22), pages 1-25, November.
    7. Shilei Lv & Jiawen Zhu & Ran Wang, 2023. "Experimental Research on a Solar Energy Phase Change Heat Storage Heating System Applied in the Rural Area," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    8. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Lingyu Zheng & Xuelai Zhang & Weisan Hua & Xinfeng Wu & Fa Mao, 2021. "The Effect of Hydroxylated Multi-Walled Carbon Nanotubes on the Properties of Peg-Cacl 2 Form-Stable Phase Change Materials," Energies, MDPI, vol. 14(5), pages 1-17, March.
    10. Zhou, Yuekuan, 2022. "Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate," Renewable Energy, Elsevier, vol. 199(C), pages 204-225.
    11. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    12. Kong, Xiangfei & Jiang, Lina & Yuan, Ye & Qiao, Xu, 2022. "Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation," Energy, Elsevier, vol. 239(PE).
    13. Sandra Cunha & Antonella Sarcinella & José Aguiar & Mariaenrica Frigione, 2023. "Perspective on the Development of Energy Storage Technology Using Phase Change Materials in the Construction Industry: A Review," Energies, MDPI, vol. 16(12), pages 1-32, June.
    14. Soares, N. & Matias, T. & Durães, L. & Simões, P.N. & Costa, J.J., 2023. "Thermophysical characterization of paraffin-based PCMs for low temperature thermal energy storage applications for buildings," Energy, Elsevier, vol. 269(C).
    15. Abdelkader Sarri & Saleh Nasser Al-Saadi & Müslüm Arıcı & Djamel Bechki & Hamza Bouguettaia, 2023. "Architectural Design Strategies for Enhancement of Thermal and Energy Performance of PCMs-Embedded Envelope System for an Office Building in a Typical Arid Saharan Climate," Sustainability, MDPI, vol. 15(2), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    2. Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "Application of an active PCM storage system into a building for heating/cooling load reduction," Energy, Elsevier, vol. 210(C).
    4. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    5. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.
    7. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    9. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    10. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    11. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    12. Wu, Minqiang & Li, Tingxian & He, Qifan & Du, Ruxue & Wang, Ruzhu, 2022. "Thermally conductive and form-stable phase change composite for building thermal management," Energy, Elsevier, vol. 239(PA).
    13. Fateh Mebarek-Oudina & Ines Chabani, 2023. "Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems," Energies, MDPI, vol. 16(3), pages 1-21, January.
    14. Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
    15. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    16. Gao, Xiangkui & Zhang, Zujing & Yuan, Yanping & Cao, Xiaoling & Zeng, Chao & Yan, Da, 2018. "Coupled cooling method for multiple latent heat thermal storage devices combined with pre-cooling of envelope: Model development and operation optimization," Energy, Elsevier, vol. 159(C), pages 508-524.
    17. Bastida, Hector & De la Cruz-Loredo, Ivan & Ugalde-Loo, Carlos E., 2023. "Effective estimation of the state-of-charge of latent heat thermal energy storage for heating and cooling systems using non-linear state observers," Applied Energy, Elsevier, vol. 331(C).
    18. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    19. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    20. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:112-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.