IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224010867.html
   My bibliography  Save this article

Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports

Author

Listed:
  • Xu, Ruoyu
  • Liu, Xiaochen
  • Liu, Xiaohua
  • Zhang, Tao

Abstract

Centralized air-conditioning systems are widely considered a major energy consumer with high energy flexibility, contributing to renewable penetration and power system regulation. Nevertheless, a lack of understanding of their system components' abilities limits the utilization of their full potential. Hereby, we took the centralized air-conditioning systems of two hub airports as typical examples and quantified their energy flexibility potential by cooling load reduction potential (qmax), cooling energy storage capacity (Q), based on field test. Cooling plants had the highest potential (qmax = 70–110 Wc/m2; Q = 500∼1500 Whc/m2), followed by terminal devices with building thermal mass (qmax = 2–11 Wc/m2; Q = 10–40 Whc/m2) and transmission & distribution networks (qmax = 50–200 Wc/m2; Q = 10–20 Whc/m2). Various air-conditioning terminal devices utilize building thermal mass to different degrees. During the investigation, the conventional all-air system used 7.8 %∼18.7 % of the building's thermal capacity, whereas that of the radiant floor system significantly increased to 38.9 %∼48.3 %. Consequently, the systems of the hub airports can participate in demand response programs with a cooling load reduction of 2∼15 MWe, for 6–20 h using different operating strategies. These findings shed light on demand-side flexibility characterization and exploitation to support a decarbonized energy system.

Suggested Citation

  • Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010867
    DOI: 10.1016/j.energy.2024.131313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.