IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v150y2020icp1047-1056.html
   My bibliography  Save this article

Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity

Author

Listed:
  • Guan, Yong
  • Wang, Tuo
  • Tang, Rui
  • Hu, Wanling
  • Guo, Jianxuan
  • Yang, Huijun
  • Zhang, Yun
  • Duan, Shijian

Abstract

The north wall of Chinese solar greenhouses (CSGs) plays an important role in maintaining their indoor thermal environment without additional heating during the wintertime. To enhance the heat storage/release capacity of the CSG wall and further improve the indoor thermal environment, an active-passive phase change thermal storage wall system has been developed in this study. The system was composed of 5 concentrating solar air collectors (CSACs), 6 tanks that were embedded in the north wall of the CSG and filled by phase change material (PCM), tubes linking the tanks and the CSACs and a centrifugal fan with variable-frequency drive (VFD). During the daytime, the solar energy was collected by the CSACs and stored in the tanks, whereas during the nighttime, the stored energy was released into the indoor environment of the CSG through a passive heat mode of the north wall or an active heat mode of the system. Then, a numerical model of the active-passive phase change thermal storage wall system has been developed. The simulation results were validated by the experimental data with the maximum relative error and average relative error being 5.6% and 3.9%, respectively. Furthermore, the heat release capacity characteristics in three cases with the air velocities of 2 m/s (Case A), 3 m/s (Case B) and 4 m/s (Case C) at indoor outlet for the active heat mode and a passive heating case (Case D) were chosen as the control groups for study. In the proposed wall, the heat release capacity of ventilation increased and that of inner surface of the wall declined with an increasing ventilation velocity. The total heat release capacities of the cases A, B and C were 38.12 MJ, 40.26 MJ, 42.00 MJ, respectively, higher than that of the case D (33.76 MJ). On the other hand, the calculated temperature distribution indicated that there was no thermal-stable layer within depth of the 360 mm in the wall due to an apparent temperature variation of the PCM layer by ventilation. These results suggested that the proposed system could effectively promote the heat storage/release capacity of the middle layer of the wall.

Suggested Citation

  • Guan, Yong & Wang, Tuo & Tang, Rui & Hu, Wanling & Guo, Jianxuan & Yang, Huijun & Zhang, Yun & Duan, Shijian, 2020. "Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity," Renewable Energy, Elsevier, vol. 150(C), pages 1047-1056.
  • Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:1047-1056
    DOI: 10.1016/j.renene.2019.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119317070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ling, Haoshu & Chen, Chao & Wei, Shen & Guan, Yong & Ma, Caiwen & Xie, Guangya & Li, Na & Chen, Ziguang, 2015. "Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time," Applied Energy, Elsevier, vol. 140(C), pages 329-337.
    2. Chen, Wei & Liu, Wei, 2006. "Numerical simulation of the airflow and temperature distribution in a lean-to greenhouse," Renewable Energy, Elsevier, vol. 31(4), pages 517-535.
    3. Fidaros, D.K. & Baxevanou, C.A. & Bartzanas, T. & Kittas, C., 2010. "Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day," Renewable Energy, Elsevier, vol. 35(7), pages 1380-1386.
    4. Diarce, G. & Campos-Celador, Á. & Martin, K. & Urresti, A. & García-Romero, A. & Sala, J.M., 2014. "A comparative study of the CFD modeling of a ventilated active façade including phase change materials," Applied Energy, Elsevier, vol. 126(C), pages 307-317.
    5. Zhang, Baogang & Fan, Xinying & Liu, Ming & Hao, Wengang, 2016. "Experimental study of the burning-cave hot water soil heating system in solar greenhouse," Renewable Energy, Elsevier, vol. 87(P3), pages 1113-1120.
    6. Gourdo, L. & Fatnassi, H. & Tiskatine, R. & Wifaya, A. & Demrati, H. & Aharoune, A. & Bouirden, L., 2019. "Solar energy storing rock-bed to heat an agricultural greenhouse," Energy, Elsevier, vol. 169(C), pages 206-212.
    7. Nebbali, R. & Roy, J.C. & Boulard, T., 2012. "Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse," Renewable Energy, Elsevier, vol. 43(C), pages 111-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ao & Duan, Shuangping & Han, Rubing & Wang, Chaoyu, 2022. "Investigation on the dynamic thermal storage/release of the integrated PCM solar wall embedded with an evaporator," Renewable Energy, Elsevier, vol. 200(C), pages 1506-1516.
    2. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    3. Guan, Yong & Meng, Qi & Ji, Tianxu & Hu, Wanling & Li, Wenlong & Liu, Tianming, 2023. "Experimental study of the thermal characteristics of a heat storage wall with micro-heat pipe array (MHPA) and PCM in solar greenhouse," Energy, Elsevier, vol. 264(C).
    4. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    5. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Shilei Lv & Jiawen Zhu & Ran Wang, 2023. "Experimental Research on a Solar Energy Phase Change Heat Storage Heating System Applied in the Rural Area," Sustainability, MDPI, vol. 15(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    2. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Ehsan Elahi, 2020. "Thermo-Environmental Assessment of a Heated Venlo-Type Greenhouse in the Yangtze River Delta Region," Sustainability, MDPI, vol. 12(24), pages 1-34, December.
    3. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    4. Xingan Liu & He Li & Yiming Li & Xiang Yue & Subo Tian & Tianlai Li, 2020. "Effect of internal surface structure of the north wall on Chinese solar greenhouse thermal microclimate based on computational fluid dynamics," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    5. Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
    6. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    7. Tao Huang & Hongqiang Li & Guoqiang Zhang & Feng Xu, 2020. "Experimental Study on Biomass Heating System in the Greenhouse: A Case Study in Xiangtan, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    8. Chang, Zehui & Liu, Xuedong & Guo, Ziheng & Hou, Jing & Su, Yuehong, 2024. "A novel integration of supplementary photovoltaic module into compound parabolic concentrator for accelerated defrosting of solar collecting system," Renewable Energy, Elsevier, vol. 225(C).
    9. Ling, Haoshu & Wang, Liang & Chen, Chao & Chen, Haisheng, 2019. "Numerical investigations of optimal phase change material incorporated into ventilated walls," Energy, Elsevier, vol. 172(C), pages 1187-1197.
    10. Jinghua Yu & Hongyun Yang & Junwei Tao & Jingang Zhao & Yongqiang Luo, 2023. "Performance Evaluation and Optimum Design of Ventilation Roofs with Different Positions of Shape-Stabilized PCM," Sustainability, MDPI, vol. 15(11), pages 1-33, May.
    11. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    13. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    14. Zilong Fan & Yiming Li & Lingling Jiang & Lu Wang & Tianlai Li & Xingan Liu, 2023. "Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    15. Saberian, Ayad & Sajadiye, Seyed Majid, 2019. "The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation," Renewable Energy, Elsevier, vol. 138(C), pages 722-737.
    16. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    17. Hicham Fatnassi & Thierry Boulard & Christine Poncet & Nikolaos Katsoulas & Thomas Bartzanas & Murat Kacira & Habtamu Giday & In-Bok Lee, 2021. "Computational Fluid Dynamics Modelling of the Microclimate within the Boundary Layer of Leaves Leading to Improved Pest Control Management and Low-Input Greenhouse," Sustainability, MDPI, vol. 13(15), pages 1-13, July.
    18. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2023. "Sector-Specific Pathways to Sustainability: Unravelling the Most Promising Renewable Energy Options," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    19. Mi, Xuming & Liu, Ran & Cui, Hongzhi & Memon, Shazim Ali & Xing, Feng & Lo, Yiu, 2016. "Energy and economic analysis of building integrated with PCM in different cities of China," Applied Energy, Elsevier, vol. 175(C), pages 324-336.
    20. Mandilaras, I.D. & Kontogeorgos, D.A. & Founti, M.A., 2015. "A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components," Renewable Energy, Elsevier, vol. 76(C), pages 790-804.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:1047-1056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.