IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip3p1113-1120.html
   My bibliography  Save this article

Experimental study of the burning-cave hot water soil heating system in solar greenhouse

Author

Listed:
  • Zhang, Baogang
  • Fan, Xinying
  • Liu, Ming
  • Hao, Wengang

Abstract

In the northern China areas, the traditional heating methods are widely used in solar greenhouse, for example: electric heating, hot air heating, hot water heating, burning-cave heating etc. If copying the assuring building indoor environment of constant heating ways into solar greenhouse, it will further increase building energy consumption, thus improving the efficiency of energy utilization, establishing appropriate growing environment, and realizing the agricultural waste recycling are important ways of consistent with the Chinese conditions, construction of sustainable development, improving the efficiency of the greenhouse production. To solve the problem of traditional heating method for high heating energy consumption, the inharmonious between greenhouse air temperature and soil temperature, uneven soil temperature, the research build the burning cave hot water soil heating system of solar greenhouse experimental platform in accordance with principle of energy cascade utilization. This experiment platform will transfer burning cave internal heat into soil heating system. The soil is evenly heated by system. Through testing the actual operation effect of the burning cave hot water soil heating system of new solar greenhouse, electric heating system, no taking any heating measures system, burning cave hot water soil heating system of solar greenhouse can improve the soil average temperature 5 ∼ 6 °C. This research provides experimental basis for practical applications and promotion.

Suggested Citation

  • Zhang, Baogang & Fan, Xinying & Liu, Ming & Hao, Wengang, 2016. "Experimental study of the burning-cave hot water soil heating system in solar greenhouse," Renewable Energy, Elsevier, vol. 87(P3), pages 1113-1120.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p3:p:1113-1120
    DOI: 10.1016/j.renene.2015.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Canakci, Murad & Yasemin Emekli, N. & Bilgin, Sefai & Caglayan, Nuri, 2013. "Heating requirement and its costs in greenhouse structures: A case study for Mediterranean region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 483-490.
    2. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    3. Chau, J. & Sowlati, T. & Sokhansanj, S. & Preto, F. & Melin, S. & Bi, X., 2009. "Techno-economic analysis of wood biomass boilers for the greenhouse industry," Applied Energy, Elsevier, vol. 86(3), pages 364-371, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    2. Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
    3. Naspolini, Helena F. & Rüther, Ricardo, 2019. "Impacts of the active power demand measurement-time resolution on the financial attractiveness of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 139(C), pages 336-345.
    4. Guan, Yong & Wang, Tuo & Tang, Rui & Hu, Wanling & Guo, Jianxuan & Yang, Huijun & Zhang, Yun & Duan, Shijian, 2020. "Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity," Renewable Energy, Elsevier, vol. 150(C), pages 1047-1056.
    5. Tao Huang & Hongqiang Li & Guoqiang Zhang & Feng Xu, 2020. "Experimental Study on Biomass Heating System in the Greenhouse: A Case Study in Xiangtan, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    6. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    2. Bąk, Agnieszka & Pławecka, Kinga & Bazan, Patrycja & Łach, Michał, 2023. "Influence of the addition of phase change materials on thermal insulation properties of foamed geopolymer structures based on fly ash," Energy, Elsevier, vol. 278(C).
    3. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    4. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    5. Suchanun Wisutthimateekorn & Nuttapol Lerkkasemsan, 2021. "A Study of Eutectic Temperature of Sugar Mixture for Thermal Energy Storage," Energies, MDPI, vol. 14(16), pages 1-14, August.
    6. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
    7. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    8. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    9. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    10. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    12. Verma, V.K. & Bram, S. & Vandendael, I. & Laha, P. & Hubin, A. & De Ruyck, J., 2011. "Residential pellet boilers in Belgium: Standard laboratory and real life performance with respect to European standard and quality labels," Applied Energy, Elsevier, vol. 88(8), pages 2628-2634, August.
    13. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    14. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    15. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    16. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    17. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    18. Li, Y.Q. & He, Y.L. & Song, H.J. & Xu, C. & Wang, W.W., 2013. "Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials," Renewable Energy, Elsevier, vol. 59(C), pages 92-99.
    19. Llorach-Massana, Pere & Peña, Javier & Rieradevall, Joan & Montero, Juan Ignacio, 2016. "LCA & LCCA of a PCM application to control root zone temperatures of hydroponic crops in comparison with conventional root zone heating systems," Renewable Energy, Elsevier, vol. 85(C), pages 1079-1089.
    20. Roberta Di Bari & Rafael Horn & Björn Nienborg & Felix Klinker & Esther Kieseritzky & Felix Pawelz, 2020. "The Environmental Potential of Phase Change Materials in Building Applications. A Multiple Case Investigation Based on Life Cycle Assessment and Building Simulation," Energies, MDPI, vol. 13(12), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p3:p:1113-1120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.