IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v139y2019icp336-345.html
   My bibliography  Save this article

Impacts of the active power demand measurement-time resolution on the financial attractiveness of domestic solar hot water systems

Author

Listed:
  • Naspolini, Helena F.
  • Rüther, Ricardo

Abstract

This work assesses the electricity consumption profile of domestic solar hot water systems (DSHWS) and analyses, at high measurement-time resolutions for the first time, their economic viability in popular housing projects in Brazil. It analyses the impacts of the active power demand measurement-time resolution on the financial attractiveness of DSHWS. The predominance of a late-evening profile of electricity consumption for showering, coinciding with distribution utilities’ peak demand hours, leads to over 40% avoided active power during peak hours per consumer unit when adopting DSHWS. There is potential to finance DSHWS in popular housing with very favourable conditions for the distribution utility. For discount rates ranging from 0 to 9.5%, payback times ranged between less than four and five years, NPV between $ 2,191 and $ 782, and IRR between 25% and 14%. The measurement of power demand at 15-min intervals, widely adopted by distribution utilities, is not adequate to properly evaluate the financial attractiveness of DSHWS, resulting in pessimistic financial analyses of the return on investment. The low load-factor of electric showerheads used in >90% of Brazilian households, leads to the accounting of only 37% of the real avoided cost of adopting DSHWS when measuring power demand in 15-min intervals.

Suggested Citation

  • Naspolini, Helena F. & Rüther, Ricardo, 2019. "Impacts of the active power demand measurement-time resolution on the financial attractiveness of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 139(C), pages 336-345.
  • Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:336-345
    DOI: 10.1016/j.renene.2019.02.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119302526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Jie & Wang, Yanqiu & Yuan, Weiqi & Sun, Wei & He, Wei & Guo, Chao, 2014. "Experimental comparison of two PV direct-coupled solar water heating systems with the traditional system," Applied Energy, Elsevier, vol. 136(C), pages 110-118.
    2. Naspolini, Helena F. & Rüther, Ricardo, 2017. "Impacts of Domestic Solar Water Heating (DSWH) systems on the cost of a hot shower in low-income dwellings in Brazil," Renewable Energy, Elsevier, vol. 111(C), pages 124-130.
    3. Naspolini, Helena F. & Rüther, Ricardo, 2016. "The effect of measurement time resolution on the peak time power demand reduction potential of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 88(C), pages 325-332.
    4. Comodi, Gabriele & Bevilacqua, Maurizio & Caresana, Flavio & Paciarotti, Claudia & Pelagalli, Leonardo & Venella, Paola, 2016. "Life cycle assessment and energy-CO2-economic payback analyses of renewable domestic hot water systems with unglazed and glazed solar thermal panels," Applied Energy, Elsevier, vol. 164(C), pages 944-955.
    5. Chow, T.T. & Fong, K.F. & Chan, A.L.S. & Lin, Z., 2006. "Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong," Applied Energy, Elsevier, vol. 83(1), pages 42-54, January.
    6. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.
    7. Naspolini, Helena F. & Rüther, Ricardo, 2012. "Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 92-99.
    8. Bagge, Hans & Johansson, Dennis, 2011. "Measurements of household electricity and domestic hot water use in dwellings and the effect of different monitoring time resolution," Energy, Elsevier, vol. 36(5), pages 2943-2951.
    9. Kaldellis, J.K. & El-Samani, K. & Koronakis, P., 2005. "Feasibility analysis of domestic solar water heating systems in Greece," Renewable Energy, Elsevier, vol. 30(5), pages 659-682.
    10. Zhang, Baogang & Fan, Xinying & Liu, Ming & Hao, Wengang, 2016. "Experimental study of the burning-cave hot water soil heating system in solar greenhouse," Renewable Energy, Elsevier, vol. 87(P3), pages 1113-1120.
    11. Halawa, E. & Chang, K.C. & Yoshinaga, M., 2015. "Thermal performance evaluation of solar water heating systems in Australia, Taiwan and Japan – A comparative review," Renewable Energy, Elsevier, vol. 83(C), pages 1279-1286.
    12. Joubert, E.C. & Hess, S. & Van Niekerk, J.L., 2016. "Large-scale solar water heating in South Africa: Status, barriers and recommendations," Renewable Energy, Elsevier, vol. 97(C), pages 809-822.
    13. Wang, Zhangyuan & Qiu, Feng & Yang, Wansheng & Zhao, Xudong, 2015. "Applications of solar water heating system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 645-652.
    14. Moore, A.D. & Urmee, T. & Bahri, P.A. & Rezvani, S. & Baverstock, G.F., 2017. "Life cycle assessment of domestic hot water systems in Australia," Renewable Energy, Elsevier, vol. 103(C), pages 187-196.
    15. Vine, Edward & Diamond, Rick & Szydlowski, Rich, 1987. "Domestic hot water consumption in four low-income apartment buildings," Energy, Elsevier, vol. 12(6), pages 459-467.
    16. Zou, Bin & Dong, Jiankai & Yao, Yang & Jiang, Yiqiang, 2016. "An experimental investigation on a small-sized parabolic trough solar collector for water heating in cold areas," Applied Energy, Elsevier, vol. 163(C), pages 396-407.
    17. Rezvani, S. & Bahri, P.A. & Urmee, T. & Baverstock, G.F. & Moore, A.D., 2017. "Techno-economic and reliability assessment of solar water heaters in Australia based on Monte Carlo analysis," Renewable Energy, Elsevier, vol. 105(C), pages 774-785.
    18. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    19. Arnaoutakis, Nektarios & Souliotis, Manolis & Papaefthimiou, Spiros, 2017. "Comparative experimental Life Cycle Assessment of two commercial solar thermal devices for domestic applications," Renewable Energy, Elsevier, vol. 111(C), pages 187-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippo Antoniolli, Andrigo & Naspolini, Helena Flávia & de Abreu, João Frederico & Rüther, Ricardo, 2022. "The role and benefits of residential rooftop photovoltaic prosumers in Brazil," Renewable Energy, Elsevier, vol. 187(C), pages 204-222.
    2. Jiménez-Castillo, G. & Rus-Casas, C. & Tina, G.M. & Muñoz-Rodriguez, F.J., 2021. "Effects of smart meter time resolution when analyzing photovoltaic self-consumption system on a daily and annual basis," Renewable Energy, Elsevier, vol. 164(C), pages 889-896.
    3. Alexander Chupin & Alexey Sorokin & Alena Veselko & Dmitry Morkovkin & Victor Ya. Pishchik & Petr V. Alekseev, 2024. "Sustainable Financing for Transport Infrastructure: An Integral Approach for the Russian Federation," Sustainability, MDPI, vol. 16(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    2. Giglio, T. & Santos, V. & Lamberts, R., 2019. "Analyzing the impact of small solar water heating systems on peak demand and on emissions in the Brazilian context," Renewable Energy, Elsevier, vol. 133(C), pages 1404-1413.
    3. Meireles, I. & Sousa, V. & Bleys, B. & Poncelet, B., 2022. "Domestic hot water consumption pattern: Relation with total water consumption and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Filippo Antoniolli, Andrigo & Naspolini, Helena Flávia & de Abreu, João Frederico & Rüther, Ricardo, 2022. "The role and benefits of residential rooftop photovoltaic prosumers in Brazil," Renewable Energy, Elsevier, vol. 187(C), pages 204-222.
    5. Milousi, Maria & Souliotis, Manolis, 2023. "A circular economy approach to residential solar thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 242-252.
    6. Hu, Mingke & Pei, Gang & Wang, Qiliang & Li, Jing & Wang, Yunyun & Ji, Jie, 2016. "Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system," Applied Energy, Elsevier, vol. 179(C), pages 899-908.
    7. Gautam, Abhishek & Chamoli, Sunil & Kumar, Alok & Singh, Satyendra, 2017. "A review on technical improvements, economic feasibility and world scenario of solar water heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 541-562.
    8. Cruz, Talita & Schaeffer, Roberto & Lucena, André F.P. & Melo, Sérgio & Dutra, Ricardo, 2020. "Solar water heating technical-economic potential in the household sector in Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1618-1639.
    9. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    10. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    11. Mostafaeipour, Ali & Zarezade, Marjan & Goudarzi, Hossein & Rezaei-Shouroki, Mostafa & Qolipour, Mojtaba, 2017. "Investigating the factors on using the solar water heaters for dry arid regions: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 157-166.
    12. Martínez-Rodríguez, Guillermo & Fuentes-Silva, Amanda L. & Velázquez-Torres, Daniel & Picón-Núñez, Martín, 2022. "Comprehensive solar thermal integration for industrial processes," Energy, Elsevier, vol. 239(PD).
    13. Naspolini, Helena F. & Rüther, Ricardo, 2016. "The effect of measurement time resolution on the peak time power demand reduction potential of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 88(C), pages 325-332.
    14. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar industrial process heating systems in operation – Current SHIP plants and future prospects in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 409-419.
    15. Kljajić, Miroslav V. & Anđelković, Aleksandar S. & Hasik, Vaclav & Munćan, Vladimir M. & Bilec, Melissa, 2020. "Shallow geothermal energy integration in district heating system: An example from Serbia," Renewable Energy, Elsevier, vol. 147(P2), pages 2791-2800.
    16. Bahlawan, Hilal & Morini, Mirko & Pinelli, Michele & Poganietz, Witold-Roger & Spina, Pier Ruggero & Venturini, Mauro, 2019. "Optimization of a hybrid energy plant by integrating the cumulative energy demand," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Bany Mousa, Osama & Kara, Sami & Taylor, Robert A., 2019. "Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors," Applied Energy, Elsevier, vol. 241(C), pages 113-123.
    18. López-Ochoa, Luis M. & Verichev, Konstantin & Las-Heras-Casas, Jesús & Carpio, Manuel, 2019. "Solar domestic hot water regulation in the Latin American residential sector with the implementation of the Energy Performance of Buildings Directive: The case of Chile," Energy, Elsevier, vol. 188(C).
    19. Jaroslav Košičan & Miguel Ángel Pardo Picazo & Silvia Vilčeková & Danica Košičanová, 2021. "Life Cycle Assessment and Economic Energy Efficiency of a Solar Thermal Installation in a Family House," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    20. Katarzyna Ratajczak & Katarzyna Michalak & Michał Narojczyk & Łukasz Amanowicz, 2021. "Real Domestic Hot Water Consumption in Residential Buildings and Its Impact on Buildings’ Energy Performance—Case Study in Poland," Energies, MDPI, vol. 14(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:336-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.