IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp774-785.html
   My bibliography  Save this article

Techno-economic and reliability assessment of solar water heaters in Australia based on Monte Carlo analysis

Author

Listed:
  • Rezvani, S.
  • Bahri, P.A.
  • Urmee, T.
  • Baverstock, G.F.
  • Moore, A.D.

Abstract

Monte Carlo analysis is used in this study to estimate the techno-economic benefits and reliabilities of solar water heaters. The study focuses on a product range manufactured by a local company in Australia. The historical data provided by the company forms the basis of this investigation. The inverse Weibull distribution function is a good match for representing the historical data in the model in terms of the number of failures per operating time for each component. The overall system reliability is determined as the sum of individual component failures during the product lifetime. The analysis is carried out for different system configurations using copper, stainless steel and glass-lined storage tanks. All the systems utilise flat plate collectors. The product with glass-lined storage tanks and electric boosters show a good overall reliability if systems are maintained.

Suggested Citation

  • Rezvani, S. & Bahri, P.A. & Urmee, T. & Baverstock, G.F. & Moore, A.D., 2017. "Techno-economic and reliability assessment of solar water heaters in Australia based on Monte Carlo analysis," Renewable Energy, Elsevier, vol. 105(C), pages 774-785.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:774-785
    DOI: 10.1016/j.renene.2017.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117300058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N/A, 2007. "Energy Battles, Policies and Politics," Energy & Environment, , vol. 18(6), pages 819-824, November.
    2. Higgins, Andrew & McNamara, Cheryl & Foliente, Greg, 2014. "Modelling future uptake of solar photo-voltaics and water heaters under different government incentives," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 142-155.
    3. N/A, 2007. "Carbon Energy Developments," Energy & Environment, , vol. 18(6), pages 837-841, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    2. Wang, Jiangjiang & Li, Meng & Ren, Fukang & Li, Xiaojing & Liu, Boxiang, 2018. "Modified exergoeconomic analysis method based on energy level with reliability consideration: Cost allocations in a biomass trigeneration system," Renewable Energy, Elsevier, vol. 123(C), pages 104-116.
    3. Naspolini, Helena F. & Rüther, Ricardo, 2019. "Impacts of the active power demand measurement-time resolution on the financial attractiveness of domestic solar hot water systems," Renewable Energy, Elsevier, vol. 139(C), pages 336-345.
    4. Chopra, K. & Tyagi, V.V. & Popli, Sakshi & Pandey, A.K., 2023. "Technical & financial feasibility assessment of heat pipe evacuated tube collector for water heating using Monte Carlo technique for buildings," Energy, Elsevier, vol. 267(C).
    5. Carvalho, Diego B. & Pinto, Bárbara L. & Guardia, Eduardo C. & Marangon Lima, José W., 2020. "Economic impact of anticipations or delays in the completion of power generation projects in the Brazilian energy market," Renewable Energy, Elsevier, vol. 147(P1), pages 1312-1320.
    6. Mostafaeipour, Ali & Zarezade, Marjan & Goudarzi, Hossein & Rezaei-Shouroki, Mostafa & Qolipour, Mojtaba, 2017. "Investigating the factors on using the solar water heaters for dry arid regions: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 157-166.
    7. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Qiao, Yaning & Zhang, Xin, 2020. "Energy performance and life cycle cost assessments of a photovoltaic/thermal assisted heat pump system," Energy, Elsevier, vol. 206(C).
    8. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sharma, Ravi Kumar & Sari, Ahmet, 2020. "PCM integrated glass in glass tube solar collector for low and medium temperature applications: Thermodynamic & techno-economic approach," Energy, Elsevier, vol. 198(C).
    9. Nourpour, Mohsen & Khoshgoftar Manesh, Mohammad Hasan, 2023. "Availability and 6E assessment and optimal design of a novel cogeneration system based on integrated turbo compressor station - SOFC-solar-geothermal-steam and organic Rankine cycles with machine lear," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karakaya, Emrah, 2016. "Finite Element Method for forecasting the diffusion of photovoltaic systems: Why and how?," Applied Energy, Elsevier, vol. 163(C), pages 464-475.
    2. Brown, Mark T. & Cohen, Matthew J. & Sweeney, Sharlynn, 2009. "Predicting national sustainability: The convergence of energetic, economic and environmental realities," Ecological Modelling, Elsevier, vol. 220(23), pages 3424-3438.
    3. Gautam, Abhishek & Chamoli, Sunil & Kumar, Alok & Singh, Satyendra, 2017. "A review on technical improvements, economic feasibility and world scenario of solar water heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 541-562.
    4. Higgins, Andrew & Grozev, George & Ren, Zhengen & Garner, Stephen & Walden, Glenn & Taylor, Michelle, 2014. "Modelling future uptake of distributed energy resources under alternative tariff structures," Energy, Elsevier, vol. 74(C), pages 455-463.
    5. Karakaya, Emrah, 2014. "Finite Element Model of the Innovation Diffusion: An Application to Photovoltaic Systems," INDEK Working Paper Series 2014/6, Royal Institute of Technology, Department of Industrial Economics and Management.
    6. van Blommestein, Kevin & Daim, Tugrul U. & Cho, Yonghee & Sklar, Paul, 2018. "Structuring financial incentives for residential solar electric systems," Renewable Energy, Elsevier, vol. 115(C), pages 28-40.
    7. Rana, Anber & Sadiq, Rehan & Alam, M. Shahria & Karunathilake, Hirushie & Hewage, Kasun, 2021. "Evaluation of financial incentives for green buildings in Canadian landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Chang, Keh-Chin & Lin, Wei-Min & Leu, Tzong-Shyng & Chung, Kung-Ming, 2016. "Perspectives for solar thermal applications in Taiwan," Energy Policy, Elsevier, vol. 94(C), pages 25-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:774-785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.