IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v241y2019icp113-123.html
   My bibliography  Save this article

Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors

Author

Listed:
  • Bany Mousa, Osama
  • Kara, Sami
  • Taylor, Robert A.

Abstract

Solar technologies are a clean source of energy with no emissions during their usage phase, however, not all solar technologies are created equal in terms of their total impacts over their life-cycle. While many life-cycle assessment (LCA) studies have investigated solar photovoltaics and—to a lesser extent—solar thermal technologies independently, there are very few direct comparisons between these technologies due to differences in their design/sizing, boundaries, location-specific performance, and several other factors. However, since electricity can be converted to heat (and visa-versa), it is clearly possible to make such a link to holistically compare different solar technologies with respect to an intended application. To address this, the following article provides an LCA methodology to comparatively assess the environmental impact of solar thermal (ST) and solar photovoltaic (PV) technologies from cradle through the usage phase (noting that end-of-life impacts for these systems are still uncertain). That is, characteristic collector types which could be employed on factory and commercial rooftops were evaluated based on their embodied energy payback time (EPBT) and greenhouse gas emission payback times (GHGe PBT). Characteristic geographical locations were also analyzed since the equivalent carbon dioxide impact can vary between regions and these technologies due to differences in the available solar resource and the primary energy mix, they offset. This research also presents new data and an original assessment for a linear Fresnel collector which is suitable for industrial rooftops. The analysis revealed that the EPBT and GHGe PBT varied between 1.2 and 15 years and between 2 and 17 years, respectively, for the solar technologies and geographical locations considered in this study. The results also indicate that an ST collector system has a lower EPBT in high direct normal irradiation locations than a monocrystalline PV system. However, in terms of the GHGe PBT, the findings do not reveal a conclusive verdict for or against ST versus PV technologies. Overall, this study provides a new, global comparison between ST and PV solar technologies for industrial applications. This work is significant since many manufacturers around the world are considering utilizing their factory rooftop space for solar energy harvesting. As such, the proposed LCA method provides guidance for manufacturers, policymakers, and future sustainability reporting standards, to determine which solar technology achieves the fastest EPBT and GHGe PBT if the local solar resources and primary energy mix are known.

Suggested Citation

  • Bany Mousa, Osama & Kara, Sami & Taylor, Robert A., 2019. "Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors," Applied Energy, Elsevier, vol. 241(C), pages 113-123.
  • Handle: RePEc:eee:appene:v:241:y:2019:i:c:p:113-123
    DOI: 10.1016/j.apenergy.2019.03.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919304623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, L. & Yang, H.X., 2010. "Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong," Applied Energy, Elsevier, vol. 87(12), pages 3625-3631, December.
    2. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    3. Nishimura, A. & Hayashi, Y. & Tanaka, K. & Hirota, M. & Kato, S. & Ito, M. & Araki, K. & Hu, E.J., 2010. "Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system," Applied Energy, Elsevier, vol. 87(9), pages 2797-2807, September.
    4. Sherwani, A.F. & Usmani, J.A. & Varun, 2010. "Life cycle assessment of solar PV based electricity generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 540-544, January.
    5. Martinopoulos, G. & Tsilingiridis, G. & Kyriakis, N., 2013. "Identification of the environmental impact from the use of different materials in domestic solar hot water systems," Applied Energy, Elsevier, vol. 102(C), pages 545-555.
    6. Desideri, Umberto & Proietti, Stefania & Zepparelli, Francesco & Sdringola, Paolo & Bini, Silvia, 2012. "Life Cycle Assessment of a ground-mounted 1778kWp photovoltaic plant and comparison with traditional energy production systems," Applied Energy, Elsevier, vol. 97(C), pages 930-943.
    7. Goe, Michele & Gaustad, Gabrielle, 2014. "Strengthening the case for recycling photovoltaics: An energy payback analysis," Applied Energy, Elsevier, vol. 120(C), pages 41-48.
    8. Kaplan, P. Ozge & Witt, Jonathan W., 2019. "What is the role of distributed energy resources under scenarios of greenhouse gas reductions? A specific focus on combined heat and power systems in the industrial and commercial sectors," Applied Energy, Elsevier, vol. 235(C), pages 83-94.
    9. Zhong, Z.W. & Song, B. & Loh, P.E., 2011. "LCAs of a polycrystalline photovoltaic module and a wind turbine," Renewable Energy, Elsevier, vol. 36(8), pages 2227-2237.
    10. Ardente, Fulvio & Beccali, Giorgio & Cellura, Maurizio & Lo Brano, Valerio, 2005. "Life cycle assessment of a solar thermal collector: sensitivity analysis, energy and environmental balances," Renewable Energy, Elsevier, vol. 30(2), pages 109-130.
    11. Sumper, Andreas & Robledo-García, Mercedes & Villafáfila-Robles, Roberto & Bergas-Jané, Joan & Andrés-Peiró, Juan, 2011. "Life-cycle assessment of a photovoltaic system in Catalonia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3888-3896.
    12. Stoppato, A., 2008. "Life cycle assessment of photovoltaic electricity generation," Energy, Elsevier, vol. 33(2), pages 224-232.
    13. Balaji, K. & Iniyan, S. & Goic, Ranko, 2018. "Thermal performance of solar water heater using velocity enhancer," Renewable Energy, Elsevier, vol. 115(C), pages 887-895.
    14. Raugei, Marco & Bargigli, Silvia & Ulgiati, Sergio, 2007. "Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si," Energy, Elsevier, vol. 32(8), pages 1310-1318.
    15. Lau, F. Din-Houn & Adams, Niall M. & Girolami, Mark A. & Butler, Liam J. & Elshafie, Mohammed Z.E.B., 2018. "The role of statistics in data-centric engineering," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 58-62.
    16. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    17. Comodi, Gabriele & Bevilacqua, Maurizio & Caresana, Flavio & Paciarotti, Claudia & Pelagalli, Leonardo & Venella, Paola, 2016. "Life cycle assessment and energy-CO2-economic payback analyses of renewable domestic hot water systems with unglazed and glazed solar thermal panels," Applied Energy, Elsevier, vol. 164(C), pages 944-955.
    18. Lauterbach, C. & Schmitt, B. & Jordan, U. & Vajen, K., 2012. "The potential of solar heat for industrial processes in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5121-5130.
    19. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    20. Li, Qiyuan & Zheng, Cheng & Shirazi, Ali & Bany Mousa, Osama & Moscia, Fabio & Scott, Jason A. & Taylor, Robert A., 2017. "Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications," Applied Energy, Elsevier, vol. 190(C), pages 1159-1173.
    21. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    22. Wong, J.H. & Royapoor, M. & Chan, C.W., 2016. "Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 608-618.
    23. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    24. Raman, Vivek & Tiwari, G.N., 2008. "Life cycle cost analysis of HPVT air collector under different Indian climatic conditions," Energy Policy, Elsevier, vol. 36(2), pages 603-611, February.
    25. Desideri, U. & Zepparelli, F. & Morettini, V. & Garroni, E., 2013. "Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations," Applied Energy, Elsevier, vol. 102(C), pages 765-784.
    26. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    27. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    28. Ardente, Fulvio & Beccali, Giorgio & Cellura, Maurizio & Lo Brano, Valerio, 2005. "Life cycle assessment of a solar thermal collector," Renewable Energy, Elsevier, vol. 30(7), pages 1031-1054.
    29. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    30. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    31. Ministry of Energy and Mines, Lao PDR & The Economic Research Institute for ASEAN and East Asia, . "Lao PDR Energy Statistics 2018," Books, Economic Research Institute for ASEAN and East Asia (ERIA), number 2018-lao-pdr-energy-stati edited by Ministry of Energy and Mines, Lao PDR & The Economic Research Institute for ASEAN and East Asia, July.
    32. Arnaoutakis, Nektarios & Souliotis, Manolis & Papaefthimiou, Spiros, 2017. "Comparative experimental Life Cycle Assessment of two commercial solar thermal devices for domestic applications," Renewable Energy, Elsevier, vol. 111(C), pages 187-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hertel, Julian D. & Canals, Vincent & Pujol-Nadal, Ramón, 2020. "On-site optical characterization of large-scale solar collectors through ray-tracing optimization," Applied Energy, Elsevier, vol. 262(C).
    2. Li, Zihao & Zhang, Wei & He, Bo & Xie, Lingzhi & Chen, Mo & Li, Jianhui & Zhao, Oufan & Wu, Xin, 2022. "A comprehensive life cycle assessment study of innovative bifacial photovoltaic applied on building," Energy, Elsevier, vol. 245(C).
    3. Gabriel Zsembinszki & Noelia Llantoy & Valeria Palomba & Andrea Frazzica & Mattia Dallapiccola & Federico Trentin & Luisa F. Cabeza, 2021. "Life Cycle Assessment (LCA) of an Innovative Compact Hybrid Electrical-Thermal Storage System for Residential Buildings in Mediterranean Climate," Sustainability, MDPI, vol. 13(9), pages 1-22, May.
    4. Oliver O. Apeh & Edson L. Meyer & Ochuko K. Overen, 2022. "Contributions of Solar Photovoltaic Systems to Environmental and Socioeconomic Aspects of National Development—A Review," Energies, MDPI, vol. 15(16), pages 1-28, August.
    5. Violeta Motuzienė & Kęstutis Čiuprinskas & Artur Rogoža & Vilūnė Lapinskienė, 2022. "A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies," Energies, MDPI, vol. 15(22), pages 1-26, November.
    6. Derick Mathew & Mohamed Emad Farrag & Rani Chinnappa Naidu & Rajesh Kumar Muthu & A Sivaprakasam & P Somasundaram, 2021. "Buck-Boost Single-Stage Microinverter for Building Integrated Photovoltaic Systems," Energies, MDPI, vol. 14(23), pages 1-21, November.
    7. Luo, Xiaojun & Oyedele, Lukumon O., 2022. "Integrated life-cycle optimisation and supply-side management for building retrofitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    9. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    11. Gao, Datong & Kwan, Trevor Hocksun & Dabwan, Yousef Naji & Hu, Maobin & Hao, Yong & Zhang, Tao & Pei, Gang, 2022. "Seasonal-regulatable energy systems design and optimization for solar energy year-round utilization☆," Applied Energy, Elsevier, vol. 322(C).
    12. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    14. Bakdi, Azzeddine & Bounoua, Wahiba & Mekhilef, Saad & Halabi, Laith M., 2019. "Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV," Energy, Elsevier, vol. 189(C).
    15. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2021. "Scaling-up the installation of hybrid solar collectors to reduce CO2 emissions in a Mexican industrial sector from now to 2030," Applied Energy, Elsevier, vol. 298(C).
    16. Kong, Minjin & Hong, Taehoon & Ji, Changyoon & Kang, Hyuna & Lee, Minhyun, 2020. "Development of building driven-energy payback time for energy transition of building with renewable energy systems," Applied Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    2. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    3. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    4. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    5. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    6. Gabriel Constantino & Marcos Freitas & Neilton Fidelis & Marcio Giannini Pereira, 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts," Energies, MDPI, vol. 11(10), pages 1-28, October.
    7. Yu, Zhiqiang & Ma, Wenhui & Xie, Keqiang & Lv, Guoqiang & Chen, Zhengjie & Wu, Jijun & Yu, Jie, 2017. "Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China," Applied Energy, Elsevier, vol. 185(P1), pages 68-81.
    8. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    9. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    10. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    11. Magrassi, Fabio & Rocco, Elena & Barberis, Stefano & Gallo, Michela & Del Borghi, Adriana, 2019. "Hybrid solar power system versus photovoltaic plant: A comparative analysis through a life cycle approach," Renewable Energy, Elsevier, vol. 130(C), pages 290-304.
    12. Wong, J.H. & Royapoor, M. & Chan, C.W., 2016. "Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 608-618.
    13. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    14. Wu, Xudong & Li, Chaohui & Shao, Ling & Meng, Jing & Zhang, Lixiao & Chen, Guoqian, 2021. "Is solar power renewable and carbon-neutral: Evidence from a pilot solar tower plant in China under a systems view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Kabakian, V. & McManus, M.C. & Harajli, H., 2015. "Attributional life cycle assessment of mounted 1.8kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system," Applied Energy, Elsevier, vol. 154(C), pages 428-437.
    16. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    17. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    19. Lamnatou, Chr. & Chemisana, D. & Mateus, R. & Almeida, M.G. & Silva, S.M., 2015. "Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems," Renewable Energy, Elsevier, vol. 75(C), pages 833-846.
    20. Souliotis, Manolis & Arnaoutakis, Nektarios & Panaras, Giorgos & Kavga, Angeliki & Papaefthimiou, Spiros, 2018. "Experimental study and Life Cycle Assessment (LCA) of Hybrid Photovoltaic/Thermal (PV/T) solar systems for domestic applications," Renewable Energy, Elsevier, vol. 126(C), pages 708-723.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:241:y:2019:i:c:p:113-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.