IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v163y2016icp396-407.html
   My bibliography  Save this article

An experimental investigation on a small-sized parabolic trough solar collector for water heating in cold areas

Author

Listed:
  • Zou, Bin
  • Dong, Jiankai
  • Yao, Yang
  • Jiang, Yiqiang

Abstract

When used in cold environment, the conventional flat plate solar collectors and all-glass evacuated tube solar collectors will cause various problems, such as large heat loss, low efficiency, freeze and tube-burst, which severely limit their applications. In this paper, a special small-sized parabolic trough solar collector (PTC), which could overcome the shortcomings of conventional solar collectors, was proposed for water heating in cold areas. An experimental platform was developed, and extensive tests were conducted to evaluate the characteristics of the proposed PTC. It was found that the thermal efficiency of the proposed PTC reached about 67% even under the condition of solar radiation of less than 310W/m2, indicating that the PTC could collect solar radiation efficiently. The results also showed that when the fluid temperature was under 100°C, the thermal efficiency was improved with increased fluid temperature, due to the increase of Reynolds number caused by the great variation of thermophysical parameters of the heat transfer fluid (HTF), which resulted from the increasing fluid temperature. Both the frosting on the reflector and the ambient wind velocity weakened the thermal efficiency greatly. The highest thermal efficiencies were respectively about 26% and 56% under condition of frosting and wind velocity of 5.0m/s. The comparison test showed the coated double glazing receiver had a longer temperature response delay to the deflected sunlight than that of the uncoated one. The tested PTC system operated normally in low fluid temperature condition, showing great anti-freezing property in cold environment.

Suggested Citation

  • Zou, Bin & Dong, Jiankai & Yao, Yang & Jiang, Yiqiang, 2016. "An experimental investigation on a small-sized parabolic trough solar collector for water heating in cold areas," Applied Energy, Elsevier, vol. 163(C), pages 396-407.
  • Handle: RePEc:eee:appene:v:163:y:2016:i:c:p:396-407
    DOI: 10.1016/j.apenergy.2015.10.186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915014361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Zhiyong & Li, Shidong & Yuan, Guofeng & Lei, Dongqiang & Wang, Zhifeng, 2014. "Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver," Applied Energy, Elsevier, vol. 113(C), pages 902-911.
    2. Chong, K.K. & Chay, K.G. & Chin, K.H., 2012. "Study of a solar water heater using stationary V-trough collector," Renewable Energy, Elsevier, vol. 39(1), pages 207-215.
    3. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    4. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    5. Devabhaktuni, Vijay & Alam, Mansoor & Shekara Sreenadh Reddy Depuru, Soma & Green, Robert C. & Nims, Douglas & Near, Craig, 2013. "Solar energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 555-564.
    6. Smyth, M. & Eames, P.C. & Norton, B., 2004. "Techno-economic appraisal of an integrated collector/storage solar water heater," Renewable Energy, Elsevier, vol. 29(9), pages 1503-1514.
    7. Xu, Chengmu & Chen, Zhiping & Li, Ming & Zhang, Peng & Ji, Xu & Luo, Xi & Liu, Jiangtao, 2014. "Research on the compensation of the end loss effect for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 115(C), pages 128-139.
    8. Li, Ming & Xu, Chengmu & Ji, Xu & Zhang, Peng & Yu, Qiongfen, 2015. "A new study on the end loss effect for parabolic trough solar collectors," Energy, Elsevier, vol. 82(C), pages 382-394.
    9. Wu, Zhiyong & Lei, Dongqiang & Yuan, Guofeng & Shao, Jiajia & Zhang, Yunting & Wang, Zhifeng, 2014. "Structural reliability analysis of parabolic trough receivers," Applied Energy, Elsevier, vol. 123(C), pages 232-241.
    10. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    11. Hachicha, A.A. & Rodríguez, I. & Capdevila, R. & Oliva, A., 2013. "Heat transfer analysis and numerical simulation of a parabolic trough solar collector," Applied Energy, Elsevier, vol. 111(C), pages 581-592.
    12. Zhang, Liang & Yu, Zitao & Fan, Liwu & Wang, Wujun & Chen, Huan & Hu, Yacai & Fan, Jianren & Ni, Mingjiang & Cen, Kefa, 2013. "An experimental investigation of the heat losses of a U-type solar heat pipe receiver of a parabolic trough collector-based natural circulation steam generation system," Renewable Energy, Elsevier, vol. 57(C), pages 262-268.
    13. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    14. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
    2. Zou, Bin & Yao, Yang & Jiang, Yiqiang & Yang, Hongxing, 2018. "A new algorithm for obtaining the critical tube diameter and intercept factor of parabolic trough solar collectors," Energy, Elsevier, vol. 150(C), pages 451-467.
    3. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    4. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    5. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    6. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    7. Fuqiang, Wang & Zhexiang, Tang & Xiangtao, Gong & Jianyu, Tan & Huaizhi, Han & Bingxi, Li, 2016. "Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube," Energy, Elsevier, vol. 114(C), pages 275-292.
    8. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    9. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    10. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    11. Gautam, Abhishek & Chamoli, Sunil & Kumar, Alok & Singh, Satyendra, 2017. "A review on technical improvements, economic feasibility and world scenario of solar water heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 541-562.
    12. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    13. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    14. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2019. "Performance analysis of Parabolic Trough Collectors with Double Glass Envelope," Renewable Energy, Elsevier, vol. 130(C), pages 1092-1107.
    15. Wang, Yinfeng & Yang, Li & Wang, Xiaoyuan & Chen, Haijun & Fan, Hongtu & Taylor, Robert A. & Zhu, Yuezhao, 2017. "CFD simulation of an intermediate temperature, two-phase loop thermosiphon for use as a linear solar receiver," Applied Energy, Elsevier, vol. 207(C), pages 36-44.
    16. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    17. Zheng, Zhang-Jing & Li, Ming-Jia & He, Ya-Ling, 2017. "Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 1152-1161.
    18. Casanovas-Rubio, Maria del Mar & Armengou, Jaume, 2018. "Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 741-753.
    19. Rodriguez-Sanchez, David & Rosengarten, Gary, 2015. "Improving the concentration ratio of parabolic troughs using a second-stage flat mirror," Applied Energy, Elsevier, vol. 159(C), pages 620-632.
    20. Fuqiang, Wang & Qingzhi, Lai & Huaizhi, Han & Jianyu, Tan, 2016. "Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics," Applied Energy, Elsevier, vol. 164(C), pages 411-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:163:y:2016:i:c:p:396-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.