IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v126y2014icp307-317.html
   My bibliography  Save this article

A comparative study of the CFD modeling of a ventilated active façade including phase change materials

Author

Listed:
  • Diarce, G.
  • Campos-Celador, Á.
  • Martin, K.
  • Urresti, A.
  • García-Romero, A.
  • Sala, J.M.

Abstract

This article describes the development of a CFD 2D model of a new type of ventilated active façade which includes a PCM (Phase Change Material) in its outer layer. The model was carried out using the software Fluent. The numerical results were compared against experimental data obtained by means of a real-scale PASLINK test facility. Two different approaches were tested to model the PCM. To model the radiation, S2S and DO sub-models were tested. RNG k–ε, Standard k–ω and SST k–ω turbulence models were compared to model the air flow inside the ventilated layer. The results showed that for the geometry under consideration it was suitable to consider the PCM to be a solid material with variable Cp. The DO model accurately reproduced the radiation phenomena. For an air flow rate that resulted in a turbulent regime inside the air chamber, the RNG k–ε model showed good agreement between the experimental data and the simulated results. The developed model can be considered suitable for the simulation and optimization of the façade under turbulent flow conditions. Further research should be conducted to improve the accuracy of the model for low-Reynolds-number turbulence conditions.

Suggested Citation

  • Diarce, G. & Campos-Celador, Á. & Martin, K. & Urresti, A. & García-Romero, A. & Sala, J.M., 2014. "A comparative study of the CFD modeling of a ventilated active façade including phase change materials," Applied Energy, Elsevier, vol. 126(C), pages 307-317.
  • Handle: RePEc:eee:appene:v:126:y:2014:i:c:p:307-317
    DOI: 10.1016/j.apenergy.2014.03.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914003201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.03.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O'Callaghan, P. W. & Probert, S. D., 1977. "Sol-air temperature," Applied Energy, Elsevier, vol. 3(4), pages 307-311, October.
    2. Lazaro, Ana & Peñalosa, Conchita & Solé, Aran & Diarce, Gonzalo & Haussmann, Thomas & Fois, Magali & Zalba, Belén & Gshwander, Stefan & Cabeza, Luisa F., 2013. "Intercomparative tests on phase change materials characterisation with differential scanning calorimeter," Applied Energy, Elsevier, vol. 109(C), pages 415-420.
    3. Diarce, Gonzalo & Urresti, Aitor & García-Romero, Ana & Delgado, Alejandra & Erkoreka, Aitor & Escudero, Cesar & Campos-Celador, Álvaro, 2013. "Ventilated active façades with PCM," Applied Energy, Elsevier, vol. 109(C), pages 530-537.
    4. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    5. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saedodin, Seyfolah & Motaghedi Barforoush, Mohammad Sadegh, 2015. "Experimental and numerical investigations on enclosure pressure effects on radiation and convection heat losses from two finite concentric cylinders using two radiation shields," Energy, Elsevier, vol. 90(P1), pages 652-662.
    2. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    3. Iten, Muriel & Liu, Shuli & Shukla, Ashish, 2018. "Experimental validation of an air-PCM storage unit comparing the effective heat capacity and enthalpy methods through CFD simulations," Energy, Elsevier, vol. 155(C), pages 495-503.
    4. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    5. Guan, Yong & Wang, Tuo & Tang, Rui & Hu, Wanling & Guo, Jianxuan & Yang, Huijun & Zhang, Yun & Duan, Shijian, 2020. "Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity," Renewable Energy, Elsevier, vol. 150(C), pages 1047-1056.
    6. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    7. Filipović, Petar & Dović, Damir & Ranilović, Borjan & Horvat, Ivan, 2019. "Numerical and experimental approach for evaluation of thermal performances of a polymer solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 127-139.
    8. Erik Schmerse & Charles A. Ikutegbe & Amar Auckaili & Mohammed M. Farid, 2020. "Using PCM in Two Proposed Residential Buildings in Christchurch, New Zealand," Energies, MDPI, vol. 13(22), pages 1-25, November.
    9. Jinghua Yu & Hongyun Yang & Junwei Tao & Jingang Zhao & Yongqiang Luo, 2023. "Performance Evaluation and Optimum Design of Ventilation Roofs with Different Positions of Shape-Stabilized PCM," Sustainability, MDPI, vol. 15(11), pages 1-33, May.
    10. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Li, Yilin & Darkwa, Jo & Kokogiannakis, Georgios & Su, Weiguang, 2019. "Phase change material blind system for double skin façade integration: System development and thermal performance evaluation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Xiaoshu Lü & Tao Lu & Tong Yang & Heidi Salonen & Zhenxue Dai & Peter Droege & Hongbing Chen, 2021. "Improving the Energy Efficiency of Buildings Based on Fluid Dynamics Models: A Critical Review," Energies, MDPI, vol. 14(17), pages 1-23, August.
    13. Jinghua Yu & Kangxin Leng & Feifei Wang & Hong Ye & Yongqiang Luo, 2020. "Simulation Study on Dynamic Thermal Performance of a New Ventilated Roof with Form-Stable PCM in Southern China," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    14. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    15. Dabiri, Soroush & Mehrpooya, Mehdi & Nezhad, Erfan Ghavami, 2018. "Latent and sensible heat analysis of PCM incorporated in a brick for cold and hot climatic conditions, utilizing computational fluid dynamics," Energy, Elsevier, vol. 159(C), pages 160-171.
    16. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    17. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    18. Ling, Haoshu & Wang, Liang & Chen, Chao & Chen, Haisheng, 2019. "Numerical investigations of optimal phase change material incorporated into ventilated walls," Energy, Elsevier, vol. 172(C), pages 1187-1197.
    19. Mandilaras, I.D. & Kontogeorgos, D.A. & Founti, M.A., 2015. "A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components," Renewable Energy, Elsevier, vol. 76(C), pages 790-804.
    20. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 178-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Tiago & Vicente, Romeu & Rodrigues, Fernanda, 2016. "Literature review on the use of phase change materials in glazing and shading solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 515-535.
    2. Tittelein, Pierre & Gibout, Stéphane & Franquet, Erwin & Johannes, Kevyn & Zalewski, Laurent & Kuznik, Frédéric & Dumas, Jean-Pierre & Lassue, Stéphane & Bédécarrats, Jean-Pierre & David, Damien, 2015. "Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: Influence of the thermodynamical modelling," Applied Energy, Elsevier, vol. 140(C), pages 269-274.
    3. Mandilaras, I.D. & Kontogeorgos, D.A. & Founti, M.A., 2015. "A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components," Renewable Energy, Elsevier, vol. 76(C), pages 790-804.
    4. Cabeza, Luisa F. & Barreneche, Camila & Martorell, Ingrid & Miró, Laia & Sari-Bey, Sana & Fois, Magali & Paksoy, Halime O. & Sahan, Nurten & Weber, Robert & Constantinescu, Mariaella & Anghel, Elena M, 2015. "Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1399-1414.
    5. Jin, Xing & Hu, Huoyan & Shi, Xing & Zhou, Xin & Yang, Liu & Yin, Yonggao & Zhang, Xiaosong, 2018. "A new heat transfer model of phase change material based on energy asymmetry," Applied Energy, Elsevier, vol. 212(C), pages 1409-1416.
    6. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    7. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    8. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    9. Al-abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Mohammed, Abdulrahman Th., 2013. "CFD applications for latent heat thermal energy storage: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 353-363.
    10. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    11. Ko, Jinyoung & Cheon, Seong-Yong & Kang, Yong-Kwon & Jeong, Jae-Weon, 2022. "Design of a thermoelectric generator-assisted energy harvesting block considering melting temperature of phase change materials," Renewable Energy, Elsevier, vol. 193(C), pages 89-112.
    12. Zhao, Dongliang & Tan, Gang, 2015. "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, Elsevier, vol. 138(C), pages 381-392.
    13. Hamedi, M.R. & Doustdar, O. & Tsolakis, A. & Hartland, J., 2019. "Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures," Applied Energy, Elsevier, vol. 235(C), pages 874-887.
    14. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    15. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    16. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    18. Jaworski, Maciej & Łapka, Piotr & Furmański, Piotr, 2014. "Numerical modelling and experimental studies of thermal behaviour of building integrated thermal energy storage unit in a form of a ceiling panel," Applied Energy, Elsevier, vol. 113(C), pages 548-557.
    19. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    20. Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:126:y:2014:i:c:p:307-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.