IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp1021-1029.html
   My bibliography  Save this article

Preparation and investigation of multicomponent alkali nitrate/nitrite salts for low temperature thermal energy storage

Author

Listed:
  • Li, Xiang
  • Wang, Yang
  • Wu, Shuang
  • Xie, Leidong

Abstract

A novel eutectic salt of alkali nitrate/nitrite mixture with low melting point was investigated using thermal analysis methods for thermal energy storage. The eutectic salt mixture system LiNO3-NaNO3-KNO3-NaNO2-KNO2 was prepared based on eutectic composition XLiNO3 = 33.5, XNaNO3 = 1.2, XKNO3 = 1.2, XNaNO2 = 17.4 and XKNO2 = 46.7 (in mole fraction). Using Differential Scanning Calormetry (DSC) apparatus, the melting point, enthalpy of fusion and specific heat capacity of the eutectic salt mixture were experimentally determined under an argon atmosphere. The density of eutectic salt mixture based on Archimedean principle was measured as a function of temperature. By means of the Thermogravimetric Analyzer (TGA) equipment, the decomposition temperature and the upper limit of operating temperature of eutectic salt mixture were determined. Viscosity of eutectic salt was also measured experimentally using a rotational coaxial cylinder viscometer constructed. Meanwhile, the empirical estimation method based on additive principle was used to predict thermal-physical properties (density and viscosity) of eutectic salt mixture. Results indicate that the predicted values were in good agreement with experiment values. Based on the thermal-physical properties of eutectic salt mixture, this novel five-component eutectic system can be used as excellent heat transfer and storage materials for low temperature thermal energy storage (TES) applications.

Suggested Citation

  • Li, Xiang & Wang, Yang & Wu, Shuang & Xie, Leidong, 2018. "Preparation and investigation of multicomponent alkali nitrate/nitrite salts for low temperature thermal energy storage," Energy, Elsevier, vol. 160(C), pages 1021-1029.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:1021-1029
    DOI: 10.1016/j.energy.2018.07.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiang & Wu, Shuang & Wang, Yang & Xie, Leidong, 2018. "Experimental investigation and thermodynamic modeling of an innovative molten salt for thermal energy storage (TES)," Applied Energy, Elsevier, vol. 212(C), pages 516-526.
    2. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    3. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    4. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    5. Cao, Lei & Tang, Yaojie & Fang, Guiyin, 2015. "Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage," Energy, Elsevier, vol. 80(C), pages 98-103.
    6. Zhang, He & Xing, Feng & Cui, Hong-Zhi & Chen, Da-Zhu & Ouyang, Xing & Xu, Su-Zhen & Wang, Jia-Xin & Huang, Yi-Tian & Zuo, Jian-Dong & Tang, Jiao-Ning, 2016. "A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties," Applied Energy, Elsevier, vol. 170(C), pages 130-139.
    7. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    8. Du, Lichan & Ding, Jing & Tian, Heqing & Wang, Weilong & Wei, Xiaolan & Song, Ming, 2017. "Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process," Applied Energy, Elsevier, vol. 204(C), pages 1225-1230.
    9. Wang, Tao & Mantha, Divakar & Reddy, Ramana G., 2013. "Novel low melting point quaternary eutectic system for solar thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1422-1429.
    10. Py, Xavier & Azoumah, Yao & Olives, Régis, 2013. "Concentrated solar power: Current technologies, major innovative issues and applicability to West African countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 306-315.
    11. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
    12. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    13. Fernández, A.G. & Ushak, S. & Galleguillos, H. & Pérez, F.J., 2014. "Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants," Applied Energy, Elsevier, vol. 119(C), pages 131-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    2. Tian, Heqing & Wang, Weilong & Ding, Jing & Wei, Xiaolan, 2021. "Thermal performance and economic evaluation of NaCl–CaCl2 eutectic salt for high-temperature thermal energy storage," Energy, Elsevier, vol. 227(C).
    3. Skrbek, Kryštof & Bartůněk, Vilém & Sedmidubský, David, 2022. "Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Na Li & Yang Wang & Qi Liu & Hao Peng, 2022. "Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage," Energies, MDPI, vol. 15(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Li & Yang Wang & Qi Liu & Hao Peng, 2022. "Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage," Energies, MDPI, vol. 15(18), pages 1-17, September.
    2. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    3. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    4. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    5. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    6. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    7. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    8. Vigneshwaran, K. & Sodhi, Gurpreet Singh & Muthukumar, P. & Guha, Anurag & Senthilmurugan, S., 2019. "Experimental and numerical investigations on high temperature cast steel based sensible heat storage system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    10. Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
    11. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    12. Villada, Carolina & Bonk, Alexander & Bauer, Thomas & Bolívar, Francisco, 2018. "High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres," Applied Energy, Elsevier, vol. 226(C), pages 107-115.
    13. Skrbek, Kryštof & Bartůněk, Vilém & Sedmidubský, David, 2022. "Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    16. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    17. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    18. Fernández, Ángel G. & Gomez-Vidal, Judith C., 2017. "Thermophysical properties of low cost lithium nitrate salts produced in northern Chile for thermal energy storage," Renewable Energy, Elsevier, vol. 101(C), pages 120-125.
    19. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    20. Du, Lichan & Ding, Jing & Tian, Heqing & Wang, Weilong & Wei, Xiaolan & Song, Ming, 2017. "Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process," Applied Energy, Elsevier, vol. 204(C), pages 1225-1230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:1021-1029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.