IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3715-d579185.html
   My bibliography  Save this article

Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration

Author

Listed:
  • Vaclav Novotny

    (Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague 6, Czech Republic
    University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 27343 Bushehrad, Czech Republic
    Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Kuang-Fu Road, Hsinchu 30013, Taiwan)

  • David J. Szucs

    (University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 27343 Bushehrad, Czech Republic)

  • Jan Špale

    (Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague 6, Czech Republic
    University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 27343 Bushehrad, Czech Republic)

  • Hung-Yin Tsai

    (Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Kuang-Fu Road, Hsinchu 30013, Taiwan)

  • Michal Kolovratnik

    (Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague 6, Czech Republic)

Abstract

Combined systems for power production and thermally activated cooling have a high potential for improving the efficiency and utilisation of thermal systems. In this regard, various configurations have been proposed and are comprehensively reviewed. They are primarily based on absorption systems and the implementation of multiple levels of complexity and flexibility. The configuration of the absorption power and cooling combined cycle proposed herein has wide commercial applicability owing to its simplicity. The configuration of the components is not new. However, the utilisation of aqueous salt solutions, the comparison with ammonia chiller and with absorption power cycles, the focus on parameters that are important for real-life applications, and the comparison of the performances for constant heat input and waste heat recovery are novel. The proposed cycle is also compared with a system based on the organic Rankine cycle and vapour compression cycle. An investigation of its performance proves that the system is suitable for a given range of boundary conditions from a thermodynamic standpoint, as well as in terms of system complexity and technical feasibility. New possibilities with regard to added power production have the potential to improve the economics and promote the use of absorption chiller systems.

Suggested Citation

  • Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3715-:d:579185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Ibarra-Bahena & Rosenberg J. Romero, 2014. "Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review," Energies, MDPI, vol. 7(2), pages 1-16, February.
    2. Sadrameli, S.M. & Goswami, D.Y., 2007. "Optimum operating conditions for a combined power and cooling thermodynamic cycle," Applied Energy, Elsevier, vol. 84(3), pages 254-265, March.
    3. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    4. Ayou, Dereje S. & Bruno, Joan Carles & Saravanan, Rajagopal & Coronas, Alberto, 2013. "An overview of combined absorption power and cooling cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 728-748.
    5. Eller, Tim & Heberle, Florian & Brüggemann, Dieter, 2017. "Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle," Energy, Elsevier, vol. 119(C), pages 188-198.
    6. Ibrahim, O.M. & Klein, S.A., 1996. "Absorption power cycles," Energy, Elsevier, vol. 21(1), pages 21-27.
    7. Kumar, G. Praveen & Saravanan, R. & Coronas, Alberto, 2017. "Experimental studies on combined cooling and power system driven by low-grade heat sources," Energy, Elsevier, vol. 128(C), pages 801-812.
    8. Vijayaraghavan, S. & Goswami, D.Y., 2006. "A combined power and cooling cycle modified to improve resource utilization efficiency using a distillation stage," Energy, Elsevier, vol. 31(8), pages 1177-1196.
    9. Gökmen Demirkaya & Ricardo Vasquez Padilla & D. Yogi Goswami, 2013. "A review of combined power and cooling cycles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(5), pages 534-547, September.
    10. Padilla, Ricardo Vasquez & Demirkaya, Gökmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2010. "Analysis of power and cooling cogeneration using ammonia-water mixture," Energy, Elsevier, vol. 35(12), pages 4649-4657.
    11. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Wang, Yubo & Su, Yuehong, 2019. "A study on heat storage sizing and flow control for a domestic scale solar-powered organic Rankine cycle-vapour compression refrigeration system," Renewable Energy, Elsevier, vol. 143(C), pages 301-312.
    13. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
    14. Lee, Su Kyoung & Lee, Jae Won & Lee, Hoseong & Chung, Jin Taek & Kang, Yong Tae, 2019. "Optimal design of generators for H2O/LiBr absorption chiller with multi-heat sources," Energy, Elsevier, vol. 167(C), pages 47-59.
    15. Wang, Hailei & Peterson, Richard & Harada, Kevin & Miller, Erik & Ingram-Goble, Robbie & Fisher, Luke & Yih, James & Ward, Chris, 2011. "Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling," Energy, Elsevier, vol. 36(1), pages 447-458.
    16. Chaiyat, Nattaporn & Kiatsiriroat, Tanongkiat, 2015. "Analysis of combined cooling heating and power generation from organic Rankine cycle and absorption system," Energy, Elsevier, vol. 91(C), pages 363-370.
    17. Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
    18. Yang, Xingyang & Zhao, Li & Li, Hailong & Yu, Zhixin, 2015. "Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture," Applied Energy, Elsevier, vol. 160(C), pages 912-919.
    19. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    20. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2008. "Parametric analysis and optimization for a combined power and refrigeration cycle," Applied Energy, Elsevier, vol. 85(11), pages 1071-1085, November.
    21. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Novotny, Vaclav & Spale, Jan & Pavlicko, Jan & Szucs, David J. & Kolovratnik, Michal, 2023. "Experimental development of a lithium bromide absorption power cycle," Renewable Energy, Elsevier, vol. 207(C), pages 321-347.
    2. Spale, Jan & Vodicka, Vaclav & Zeleny, Zbynek & Pavlicko, Jan & Mascuch, Jakub & Novotny, Vaclav, 2022. "Scaling up a woodchip-fired containerized CHP ORC unit toward commercialization," Renewable Energy, Elsevier, vol. 199(C), pages 1226-1236.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Zeting & Han, Jitian & Liu, Hai & Zhao, Hongxia, 2014. "Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios," Applied Energy, Elsevier, vol. 122(C), pages 53-61.
    2. Hu, Yuankang & Deng, Zeyu & Yang, Jiaming & Hu, Yilun & Zhong, Kaifeng & Xie, Yubao & Ou, Zhihua & Guo, Shuting & Li, Xiaoning, 2024. "Performance analysis of a novel multimode electricity-cooling cogeneration system (ECCS) driven by exhaust from a marine engine," Energy, Elsevier, vol. 300(C).
    3. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
    4. Ayou, Dereje S. & Bruno, Joan Carles & Saravanan, Rajagopal & Coronas, Alberto, 2013. "An overview of combined absorption power and cooling cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 728-748.
    5. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    6. Sun, Liuli & Han, Wei & Jing, Xuye & Zheng, Danxing & Jin, Hongguang, 2013. "A power and cooling cogeneration system using mid/low-temperature heat source," Applied Energy, Elsevier, vol. 112(C), pages 886-897.
    7. Li, You-Rong & Wang, Xiao-Qiong & Li, Xiao-Ping & Wang, Jian-Ning, 2014. "Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants," Energy, Elsevier, vol. 73(C), pages 543-553.
    8. F. Tchanche, Bertrand & Pétrissans, M. & Papadakis, G., 2014. "Heat resources and organic Rankine cycle machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1185-1199.
    9. Chen, X. & Sun, L.N. & Du, S., 2022. "Analysis and optimization on a modified ammonia-water power cycle for more efficient power generation," Energy, Elsevier, vol. 241(C).
    10. Kyoung Hoon Kim, 2019. "Thermodynamic Analysis of Kalina Based Power and Cooling Cogeneration Cycle Employed Once Through Configuration," Energies, MDPI, vol. 12(8), pages 1-17, April.
    11. Wang, Jiangfeng & Dai, Yiping & Zhang, Taiyong & Ma, Shaolin, 2009. "Parametric analysis for a new combined power and ejector–absorption refrigeration cycle," Energy, Elsevier, vol. 34(10), pages 1587-1593.
    12. Zhao, Yajing & Wang, Jiangfeng & Cao, Liyan & Wang, Yu, 2016. "Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source," Energy, Elsevier, vol. 97(C), pages 470-487.
    13. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    14. Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2022. "Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Li, Xinguo & Zhang, Qilin & Li, Xiajie, 2013. "A Kalina cycle with ejector," Energy, Elsevier, vol. 54(C), pages 212-219.
    16. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    17. Zhang, Ying & Deng, Shuai & Zhao, Li & Lin, Shan & Ni, Jiaxin & Ma, Minglu & Xu, Weicong, 2018. "Optimization and multi-time scale modeling of pilot solar driven polygeneration system based on organic Rankine cycle," Applied Energy, Elsevier, vol. 222(C), pages 396-409.
    18. Chen, X. & Wang, R.Z. & Wang, L.W. & Du, S., 2017. "A modified ammonia-water power cycle using a distillation stage for more efficient power generation," Energy, Elsevier, vol. 138(C), pages 1-11.
    19. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
    20. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3715-:d:579185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.