IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124002593.html
   My bibliography  Save this article

Thermodynamic, economic, exergoeconomic analysis of an integrated ocean thermal energy conversion system

Author

Listed:
  • Xiao, Chenglong
  • Hu, Zheng
  • Chen, Yongping
  • Zhang, Chengbin

Abstract

This paper proposes an integrated ocean thermal energy conversion (OTEC) system that couples power generation, refrigeration, and desalination. Based on the mathematical model, the thermodynamic, economic, and exergoeconomic performances are explored by evaluating several crucial parameters such as the ammonia-water concentration of the power subsystem (Xgen), the turbine inlet pressure (Pturb), etc. The results indicate that integrated OTEC system significantly improve the exergoeconomic performance since the efficient utilization of the exhausted cold seawater. The integrated system can achieve maximum net output power of 16.79 kW, refrigeration capacity of 268.87 kW, freshwater production of 53.22 t/d, as well as exergetic efficiency of 31.69% when the power subsystem's flow rate is 1.0 kg/s. Moreover, there is a maximum net output power when Pturb is under 800 kPa, and increasing Pturb leads to higher optimal Xgen. The maximum net output power, for instance, is 2.18 kW, 4.62 kW, and 9.79 kW when Pturb value is 600 kPa, 700 kPa, and 800 kPa, respectively, with corresponding optimal ammonia concentration values of 0.73, 0.83, 0.93. Furthermore, the maximum exergetic efficiency increases as Pturb enlarges. The maximum exergetic efficiency rises from 20.40% to 31.69% when Pturb increases from 600 kPa to 950 kPa. Besides, compared to the single OTEC plant's levelized cost of energy at 3.56 $/(kWh), the integrated system's can be as low as 0.098 $/(kWh).

Suggested Citation

  • Xiao, Chenglong & Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Thermodynamic, economic, exergoeconomic analysis of an integrated ocean thermal energy conversion system," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124002593
    DOI: 10.1016/j.renene.2024.120194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnaud Reynaud, 2013. "Assessing the impact of price and non-price policies on residential water demand: a case study in Wisconsin," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(3), pages 415-433, September.
    2. Jung, Jung-Yeul & Lee, Ho Saeng & Kim, Hyeon-Ju & Yoo, Yungpil & Choi, Woo-Young & Kwak, Ho-Young, 2016. "Thermoeconomic analysis of an ocean thermal energy conversion plant," Renewable Energy, Elsevier, vol. 86(C), pages 1086-1094.
    3. Hu, Zheng & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Experimental study of the absorption refrigeration using ocean thermal energy and its under-lying prospects," Renewable Energy, Elsevier, vol. 213(C), pages 47-62.
    4. Bernardoni, C. & Binotti, M. & Giostri, A., 2019. "Techno-economic analysis of closed OTEC cycles for power generation," Renewable Energy, Elsevier, vol. 132(C), pages 1018-1033.
    5. Hu, Zheng & Wan, Yueru & Zhang, Chengbin & Chen, Yongping, 2022. "Compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 186(C), pages 755-768.
    6. Mohd Idrus, N.H. & Musa, M.N. & Yahya, W.J. & Ithnin, A.M., 2017. "Geo-Ocean Thermal Energy Conversion (GeOTEC) power cycle/plant," Renewable Energy, Elsevier, vol. 111(C), pages 372-380.
    7. Yang, Min-Hsiung & Yeh, Rong-Hua & Hung, Tzu-Chen, 2017. "Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 818-836.
    8. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2014. "Modeling of trigeneration configurations based on biomass gasification and comparison of performance," Applied Energy, Elsevier, vol. 114(C), pages 845-856.
    9. Rajagopalan, Krishnakumar & Nihous, GĂ©rard C., 2013. "Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model," Renewable Energy, Elsevier, vol. 50(C), pages 532-540.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    2. Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Role of R717 blends in ocean thermal energy conversion organic Rankine cycle," Renewable Energy, Elsevier, vol. 221(C).
    3. Guillermo Lopez & Maria de los Angeles Ortega Del Rosario & Arthur James & Humberto Alvarez, 2022. "Site Selection for Ocean Thermal Energy Conversion Plants (OTEC): A Case Study in Panama," Energies, MDPI, vol. 15(9), pages 1-24, April.
    4. Langer, Jannis & Infante Ferreira, Carlos & Quist, Jaco, 2022. "Is bigger always better? Designing economically feasible ocean thermal energy conversion systems using spatiotemporal resource data," Applied Energy, Elsevier, vol. 309(C).
    5. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2020. "Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Langer, Jannis & Cahyaningwidi, Aida Astuti & Chalkiadakis, Charis & Quist, Jaco & Hoes, Olivier & Blok, Kornelis, 2021. "Plant siting and economic potential of ocean thermal energy conversion in Indonesia a novel GIS-based methodology," Energy, Elsevier, vol. 224(C).
    7. Zhang, Zhixiang & Yuan, Han & Mei, Ning, 2023. "Theoretical analysis on extraction-ejection combined power and refrigeration cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 273(C).
    8. Chen, Ruihua & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Xu, Weicong, 2022. "Energy recovery from wastewater in deep-sea mining: Feasibility study on an energy supply solution with cold wastewater," Applied Energy, Elsevier, vol. 305(C).
    9. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2022. "Upscaling scenarios for ocean thermal energy conversion with technological learning in Indonesia and their global relevance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Vera, D. & Baccioli, A. & Jurado, F. & Desideri, U., 2020. "Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification," Renewable Energy, Elsevier, vol. 162(C), pages 1399-1414.
    11. Li, Deming & Deng, Zilong & Zhang, Chengbin, 2024. "Thermodynamic process control of compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 222(C).
    12. Liu, Weimin & Xu, Xiaojian & Chen, Fengyun & Liu, Yanjun & Li, Shizhen & Liu, Lei & Chen, Yun, 2020. "A review of research on the closed thermodynamic cycles of ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Zhang, Jingzhi & Zhai, Xiaoyu & Li, Shizhen, 2020. "Numerical studies on the performance of ammonia ejectors used in ocean thermal energy conversion system," Renewable Energy, Elsevier, vol. 161(C), pages 766-776.
    14. Khosravi, A. & Syri, Sanna & Assad, M.E.H. & Malekan, M., 2019. "Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system," Energy, Elsevier, vol. 172(C), pages 304-319.
    15. Mortadi, M. & El Fadar, A. & Achkari Begdouri, O., 2024. "4E analysis of photovoltaic thermal collector-based tri-generation system with adsorption cooling: Annual simulation under Moroccan climate conditions," Renewable Energy, Elsevier, vol. 221(C).
    16. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    17. Diego Perrone & Teresa Castiglione & Pietropaolo Morrone & Ferdinando Pantano & Sergio Bova, 2023. "Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification," Energies, MDPI, vol. 16(19), pages 1-22, September.
    18. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    19. Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
    20. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124002593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.