IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v43y2012i1p361-375.html
   My bibliography  Save this article

A novel Carnot-based cycle for ocean thermal energy conversion

Author

Listed:
  • Semmari, Hamza
  • Stitou, Driss
  • Mauran, Sylvain

Abstract

A thermodynamic engine cycle can be implemented by exploiting the temperature difference existing between the warm surface seawater and cold deep seawater. It employs a working fluid that evaporates by warm seawater, produces work in an expander device, such as a gas turbine and finally condenses by cold deep seawater.

Suggested Citation

  • Semmari, Hamza & Stitou, Driss & Mauran, Sylvain, 2012. "A novel Carnot-based cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 43(1), pages 361-375.
  • Handle: RePEc:eee:energy:v:43:y:2012:i:1:p:361-375
    DOI: 10.1016/j.energy.2012.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212002976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takahashi, Patrick K. & Trenka, Andrew, 1992. "Ocean thermal energy conversion: Its promise as a total resource system," Energy, Elsevier, vol. 17(7), pages 657-668.
    2. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    3. Klüppel, Rogerio P. & Gurgel, JoséMaurício M., 1998. "Thermodynamic cycle of a liquid piston pump," Renewable Energy, Elsevier, vol. 13(2), pages 261-268.
    4. Van de Ven, James D. & Li, Perry Y., 2009. "Liquid piston gas compression," Applied Energy, Elsevier, vol. 86(10), pages 2183-2191, October.
    5. Wang, Shujie & Yuan, Peng & Li, Dong & Jiao, Yuhe, 2011. "An overview of ocean renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 91-111, January.
    6. J.C. Huang & H.J. Krock & S.K. Oney, 2003. "Revisit ocean thermal energy conversion system," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(2), pages 157-175, June.
    7. Van de Ven, James D., 2009. "Mobile hydraulic power supply: Liquid piston Stirling engine pump," Renewable Energy, Elsevier, vol. 34(11), pages 2317-2322.
    8. Lennard, D.E., 1995. "The viability and best locations for ocean thermal energy conversion systems around the world," Renewable Energy, Elsevier, vol. 6(3), pages 359-365.
    9. Yamada, Noboru & Hoshi, Akira & Ikegami, Yasuyuki, 2009. "Performance simulation of solar-boosted ocean thermal energy conversion plant," Renewable Energy, Elsevier, vol. 34(7), pages 1752-1758.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Hoon & Hwang, Jungho, 2014. "Feasibility study of a combined Ocean Thermal Energy Conversion method in South Korea," Energy, Elsevier, vol. 75(C), pages 443-452.
    2. Hunt, Julian David & Byers, Edward & Sánchez, Antonio Santos, 2019. "Technical potential and cost estimates for seawater air conditioning," Energy, Elsevier, vol. 166(C), pages 979-988.
    3. Semmari, Hamza & Mauran, Sylvain & Stitou, Driss, 2017. "Experimental validation of an analytical model of hydraulic motor operating under variable electrical loads and pressure heads," Applied Energy, Elsevier, vol. 206(C), pages 1309-1320.
    4. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    5. Wu, Zhixiang & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Cai, Cunguang, 2019. "Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory," Energy, Elsevier, vol. 181(C), pages 974-984.
    6. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    7. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    8. Song, Yang & Wang, Yanhui & Yang, Shaoqiong & Wang, Shuxin & Yang, Ming, 2020. "Sensitivity analysis and parameter optimization of energy consumption for underwater gliders," Energy, Elsevier, vol. 191(C).
    9. Chen, Fengyun & Liu, Lei & Peng, Jingping & Ge, Yunzheng & Wu, Haoyu & Liu, Weimin, 2019. "Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the rankine cycle mode," Energy, Elsevier, vol. 183(C), pages 497-503.
    10. Peng, Jingping & Ge, Yunzheng & Chen, Fengyun & Liu, Lei & Wu, Haoyu & Liu, Weimin, 2022. "Theoretical and experimental study on the performance of a high-efficiency thermodynamic cycle for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 185(C), pages 734-747.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    2. Ngangué, Max Ndamé & Stouffs, Pascal, 2020. "Dynamic simulation of an original Joule cycle liquid pistons hot air Ericsson engine," Energy, Elsevier, vol. 190(C).
    3. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    4. Jung, Jung-Yeul & Lee, Ho Saeng & Kim, Hyeon-Ju & Yoo, Yungpil & Choi, Woo-Young & Kwak, Ho-Young, 2016. "Thermoeconomic analysis of an ocean thermal energy conversion plant," Renewable Energy, Elsevier, vol. 86(C), pages 1086-1094.
    5. Faizal, Mohammed & Ahmed, M. Rafiuddin, 2013. "Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference," Renewable Energy, Elsevier, vol. 51(C), pages 234-240.
    6. Liu, Yanjun & Xue, Yifan & Chen, Yun & Liu, Weimin & Ge, Yunzheng & Zhang, Li, 2022. "Identification of nonparametric thermodynamic model and optimization of ocean thermal energy conversion radial inflow turbine," Applied Energy, Elsevier, vol. 321(C).
    7. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    8. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    9. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    10. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    11. Perna, A. & Minutillo, M. & Jannelli, E. & Cigolotti, V. & Nam, S.W. & Han, J., 2018. "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, Elsevier, vol. 231(C), pages 1216-1229.
    12. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    13. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    14. Brown, Marilyn A. & Gumerman, Etan & Sun, Xiaojing & Sercy, Kenneth & Kim, Gyungwon, 2012. "Myths and facts about electricity in the U.S. South," Energy Policy, Elsevier, vol. 40(C), pages 231-241.
    15. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    16. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    17. Kim, Dong Kyu & Lee, Ji Sung & Kim, Jinwoo & Kim, Mo Se & Kim, Min Soo, 2017. "Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C," Applied Energy, Elsevier, vol. 189(C), pages 55-65.
    18. Gouda, El Mehdi & Neu, Thibault & Benaouicha, Mustapha & Fan, Yilin & Subrenat, Albert & Luo, Lingai, 2023. "Experimental and numerical investigation on the flow and heat transfer behaviors during a compression–cooling–expansion cycle using a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 277(C).
    19. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    20. Li, Jing & Pei, Gang & Li, Yunzhu & Ji, Jie, 2013. "Analysis of a novel gravity driven organic Rankine cycle for small-scale cogeneration applications," Applied Energy, Elsevier, vol. 108(C), pages 34-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:43:y:2012:i:1:p:361-375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.