IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp974-984.html
   My bibliography  Save this article

Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory

Author

Listed:
  • Wu, Zhixiang
  • Feng, Huijun
  • Chen, Lingen
  • Xie, Zhuojun
  • Cai, Cunguang

Abstract

Constructal design of an evaporator in ocean thermal energy conversion system (OTECS) is carried out by taking the minimum dimensionless pumping power (DPP) as optimization objective. The effective volume and heat transfer rate (HTR) of the evaporator are taken as constraints in the constructal optimization. The optimal heat transfer plate (HTP) width of the evaporator is obtained. The effects of the structure and flow parameters and types of working fluid on the minimum DPP and optimal HTP width are analyzed. The results show that the DPP after constructal optimization reduces by 37.1% compared with that of the initial design point. The minimum DPP dramatically augments with the increases of HTP effective length, corrugation angle and mass flow rate of the warm seawater, and dramatically diminishes with the increases of corrugation wavelength and effective volume of the evaporator. The influence degree to optimal results varies for different design parameters and working fluids. The results can offer some valuable guidelines for the optimal designs and applications of the evaporators in OTECSs.

Suggested Citation

  • Wu, Zhixiang & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Cai, Cunguang, 2019. "Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory," Energy, Elsevier, vol. 181(C), pages 974-984.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:974-984
    DOI: 10.1016/j.energy.2019.05.216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219311041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Semmari, Hamza & Stitou, Driss & Mauran, Sylvain, 2012. "A novel Carnot-based cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 43(1), pages 361-375.
    2. Bernardoni, C. & Binotti, M. & Giostri, A., 2019. "Techno-economic analysis of closed OTEC cycles for power generation," Renewable Energy, Elsevier, vol. 132(C), pages 1018-1033.
    3. Azad, Abazar Vahdat & Amidpour, Majid, 2011. "Economic optimization of shell and tube heat exchanger based on constructal theory," Energy, Elsevier, vol. 36(2), pages 1087-1096.
    4. Mehrgoo, Morteza & Amidpour, Majid, 2017. "Constructal design and optimization of a dual pressure heat recovery steam generator," Energy, Elsevier, vol. 124(C), pages 87-99.
    5. C. Wu, 2001. "Environmental impact and design of an OTEC plant," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 15(3/4), pages 186-194.
    6. Yamada, Noboru & Hoshi, Akira & Ikegami, Yasuyuki, 2009. "Performance simulation of solar-boosted ocean thermal energy conversion plant," Renewable Energy, Elsevier, vol. 34(7), pages 1752-1758.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huijun Feng & Lingen Chen & Wei Tang & Yanlin Ge, 2022. "Optimal Design of a Dual-Pressure Steam Turbine for Rankine Cycle Based on Constructal Theory," Energies, MDPI, vol. 15(13), pages 1-20, July.
    2. Feng, Huijun & Xie, Zhuojun & Chen, Lingen & Wu, Zhixiang & Xia, Shaojun, 2020. "Constructal design for supercharged boiler superheater," Energy, Elsevier, vol. 191(C).
    3. Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
    4. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    5. Huijun Feng & Wei Tang & Lingen Chen & Junchao Shi & Zhixiang Wu, 2021. "Multi-Objective Constructal Optimization for Marine Condensers," Energies, MDPI, vol. 14(17), pages 1-18, September.
    6. Shuhuan Wei & Dini Wang, 2023. "Improvement of Constructal Optimization for “Volume-Point” Heat Conduction Based on Uniformity Principle of Temperature Difference Fields," Mathematics, MDPI, vol. 11(16), pages 1-14, August.
    7. Liu, Hanyu & Xi, Kun & Xie, Zhihui & Lu, Zhuoqun & Chen, Huawei & Zhang, Jian & Ge, Yanlin, 2023. "Constructal design of double-layer asymmetric flower baffles," Energy, Elsevier, vol. 280(C).
    8. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    9. Tang, Wei & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Shi, Junchao, 2021. "Constructal design for a boiler economizer," Energy, Elsevier, vol. 223(C).
    10. Peng, Jingping & Ge, Yunzheng & Chen, Fengyun & Liu, Lei & Wu, Haoyu & Liu, Weimin, 2022. "Theoretical and experimental study on the performance of a high-efficiency thermodynamic cycle for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 185(C), pages 734-747.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huijun Feng & Wei Tang & Lingen Chen & Junchao Shi & Zhixiang Wu, 2021. "Multi-Objective Constructal Optimization for Marine Condensers," Energies, MDPI, vol. 14(17), pages 1-18, September.
    2. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    3. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    4. Zhang, Jingzhi & Zhai, Xiaoyu & Li, Shizhen, 2020. "Numerical studies on the performance of ammonia ejectors used in ocean thermal energy conversion system," Renewable Energy, Elsevier, vol. 161(C), pages 766-776.
    5. Feng, Huijun & Xie, Zhuojun & Chen, Lingen & Wu, Zhixiang & Xia, Shaojun, 2020. "Constructal design for supercharged boiler superheater," Energy, Elsevier, vol. 191(C).
    6. Mazzetti, Marit J. & Hagen, Brede A.L. & Skaugen, Geir & Lindqvist, Karl & Lundberg, Steinar & Kristensen, Oddrun A., 2021. "Achieving 50% weight reduction of offshore steam bottoming cycles," Energy, Elsevier, vol. 230(C).
    7. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    8. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    9. Li, You-Rong & Du, Mei-Tang & Wu, Shuang-Ying & Peng, Lan & Liu, Chao, 2012. "Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle," Energy, Elsevier, vol. 40(1), pages 341-347.
    10. Xiao, Gang & Yang, Tianfeng & Liu, Huanlei & Ni, Dong & Ferrari, Mario Luigi & Li, Mingchun & Luo, Zhongyang & Cen, Kefa & Ni, Mingjiang, 2017. "Recuperators for micro gas turbines: A review," Applied Energy, Elsevier, vol. 197(C), pages 83-99.
    11. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2013. "Optimising entire lifetime economy of heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 222-235.
    12. Deng, Han & Skaugen, Geir & Næss, Erling & Zhang, Mingjie & Øiseth, Ole A., 2021. "A novel methodology for design optimization of heat recovery steam generators with flow-induced vibration analysis," Energy, Elsevier, vol. 226(C).
    13. Zhang, Ji & Zhang, Xiaomeng & Zhang, Zhixiang & Zhou, Peilin & Zhang, Yan & Yuan, Han, 2022. "Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect," Energy, Elsevier, vol. 246(C).
    14. Heidar Sadeghzadeh & Mehdi Aliehyaei & Marc A. Rosen, 2015. "Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm," Sustainability, MDPI, vol. 7(9), pages 1-17, August.
    15. Langer, Jannis & Infante Ferreira, Carlos & Quist, Jaco, 2022. "Is bigger always better? Designing economically feasible ocean thermal energy conversion systems using spatiotemporal resource data," Applied Energy, Elsevier, vol. 309(C).
    16. Aydin, Hakan & Lee, Ho-Saeng & Kim, Hyeon-Ju & Shin, Seung Kyoon & Park, Keunhan, 2014. "Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating," Renewable Energy, Elsevier, vol. 72(C), pages 154-163.
    17. Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
    18. Juan José Cartelle Barros & Manuel Lara Coira & María Pilar de la Cruz López & Alfredo del Caño Gochi & Isabel Soares, 2020. "Optimisation Techniques for Managing the Project Sustainability Objective: Application to a Shell and Tube Heat Exchanger," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    19. Kler, Aleksandr M. & Zharkov, Pavel V. & Epishkin, Nikolai O., 2019. "Parametric optimization of supercritical power plants using gradient methods," Energy, Elsevier, vol. 189(C).
    20. Zhang, Zhixiang & Yuan, Han & Mei, Ning, 2023. "Theoretical analysis on extraction-ejection combined power and refrigeration cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:974-984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.