IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v197y2017icp83-99.html
   My bibliography  Save this article

Recuperators for micro gas turbines: A review

Author

Listed:
  • Xiao, Gang
  • Yang, Tianfeng
  • Liu, Huanlei
  • Ni, Dong
  • Ferrari, Mario Luigi
  • Li, Mingchun
  • Luo, Zhongyang
  • Cen, Kefa
  • Ni, Mingjiang

Abstract

Micro gas turbines are a promising technology for distributed power generation because of their compact size, low emissions, low maintenance, low noise, high reliability and multi-fuel capability. Recuperators preheat compressed air by recovering heat from exhaust gas of turbines, thus reducing fuel consumption and improving the system efficiency, typically from 16–20% to ∼30%. A recuperator with high effectiveness and low pressure loss is mandatory for a good performance. This work aims to provide a comprehensive understanding about recuperators, covering fundamental principles (types, material selection and manufacturing), operating characteristics (heat transfer and pressure loss), optimization methods, as well as research hotspots and suggestions. It is revealed that primary-surface recuperator is prior to plate-fin and tubular ones. Ceramic recuperators outperform metallic recuperators in terms of high-temperature mechanical and corrosion properties, being expected to facilitate the overall efficiency approaching 40%. Heat transfer and pressure drop characteristics are crucial for designing a desired recuperator, and more experimental and simulation studies are necessary to obtain accurate empirical correlations for optimizing configurations of heat transfer surfaces with high ratios of Nusselt number to friction factor. Optimization methods are summarized and discussed, considering complicated relationships among pressure loss, heat transfer effectiveness, compactness and cost, and it is noted that multi-objective optimization methods are worthy of attention. Moreover, 3D printing and printed circuit heat exchanger technologies deserve more research on manufacturing of recuperators. Generally, a metallic cost-effective primary-surface recuperator with high effectiveness and low pressure drop is a currently optimal option for a micro gas turbine of an efficiency of ∼30%, while a ceramic recuperator is suggested for a high efficiency micro gas turbine (e.g. 40%).

Suggested Citation

  • Xiao, Gang & Yang, Tianfeng & Liu, Huanlei & Ni, Dong & Ferrari, Mario Luigi & Li, Mingchun & Luo, Zhongyang & Cen, Kefa & Ni, Mingjiang, 2017. "Recuperators for micro gas turbines: A review," Applied Energy, Elsevier, vol. 197(C), pages 83-99.
  • Handle: RePEc:eee:appene:v:197:y:2017:i:c:p:83-99
    DOI: 10.1016/j.apenergy.2017.03.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917303367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiayi, Huang & Chuanwen, Jiang & Rong, Xu, 2008. "A review on distributed energy resources and MicroGrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2472-2483, December.
    2. Sayyaadi, Hoseyn & Aminian, Hamid Reza, 2010. "Design and optimization of a non-TEMA type tubular recuperative heat exchanger used in a regenerative gas turbine cycle," Energy, Elsevier, vol. 35(4), pages 1647-1657.
    3. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2012. "Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints," Energy, Elsevier, vol. 46(1), pages 42-50.
    4. Pandey, Shive Dayal & Nema, V.K., 2011. "An experimental investigation of exergy loss reduction in corrugated plate heat exchanger," Energy, Elsevier, vol. 36(5), pages 2997-3001.
    5. Kurtbas, İrfan & Durmus̨, Aydın, 2004. "Efficiency and exergy analysis of a new solar air heater," Renewable Energy, Elsevier, vol. 29(9), pages 1489-1501.
    6. Ferrari, Mario L. & Sorce, Alessandro & Pascenti, Matteo & Massardo, Aristide F., 2011. "Recuperator dynamic performance: Experimental investigation with a microgas turbine test rig," Applied Energy, Elsevier, vol. 88(12), pages 5090-5096.
    7. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    8. Zhou, Guo-Yan & Wu, En & Tu, Shan-Tung, 2014. "Optimum selection of compact heat exchangers using non-structural fuzzy decision method," Applied Energy, Elsevier, vol. 113(C), pages 1801-1809.
    9. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    10. Azad, Abazar Vahdat & Amidpour, Majid, 2011. "Economic optimization of shell and tube heat exchanger based on constructal theory," Energy, Elsevier, vol. 36(2), pages 1087-1096.
    11. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    12. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    2. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    3. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    4. Francesco Pasimeni, 2017. "Adoption and Diffusion of Micro-Grids in Italy. An Analysis of Regional Factors Using Agent-Based Modelling," SPRU Working Paper Series 2017-09, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    6. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    7. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    8. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    9. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    10. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    11. Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
    12. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    13. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    14. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
    15. Canca, David & Arcos-Vargas, Ángel & Núñez, Fernando, 2018. "Blackout risk mitigation by using medium size gas turbines," Energy, Elsevier, vol. 148(C), pages 32-48.
    16. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    17. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    18. Bayod-Rújula, Angel A., 2009. "Future development of the electricity systems with distributed generation," Energy, Elsevier, vol. 34(3), pages 377-383.
    19. Zhou, Shan & Yang, Pu, 2020. "Risk management in distributed wind energy implementing Analytic Hierarchy Process," Renewable Energy, Elsevier, vol. 150(C), pages 616-623.
    20. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:197:y:2017:i:c:p:83-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.