IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v197y2017icp83-99.html
   My bibliography  Save this article

Recuperators for micro gas turbines: A review

Author

Listed:
  • Xiao, Gang
  • Yang, Tianfeng
  • Liu, Huanlei
  • Ni, Dong
  • Ferrari, Mario Luigi
  • Li, Mingchun
  • Luo, Zhongyang
  • Cen, Kefa
  • Ni, Mingjiang

Abstract

Micro gas turbines are a promising technology for distributed power generation because of their compact size, low emissions, low maintenance, low noise, high reliability and multi-fuel capability. Recuperators preheat compressed air by recovering heat from exhaust gas of turbines, thus reducing fuel consumption and improving the system efficiency, typically from 16–20% to ∼30%. A recuperator with high effectiveness and low pressure loss is mandatory for a good performance. This work aims to provide a comprehensive understanding about recuperators, covering fundamental principles (types, material selection and manufacturing), operating characteristics (heat transfer and pressure loss), optimization methods, as well as research hotspots and suggestions. It is revealed that primary-surface recuperator is prior to plate-fin and tubular ones. Ceramic recuperators outperform metallic recuperators in terms of high-temperature mechanical and corrosion properties, being expected to facilitate the overall efficiency approaching 40%. Heat transfer and pressure drop characteristics are crucial for designing a desired recuperator, and more experimental and simulation studies are necessary to obtain accurate empirical correlations for optimizing configurations of heat transfer surfaces with high ratios of Nusselt number to friction factor. Optimization methods are summarized and discussed, considering complicated relationships among pressure loss, heat transfer effectiveness, compactness and cost, and it is noted that multi-objective optimization methods are worthy of attention. Moreover, 3D printing and printed circuit heat exchanger technologies deserve more research on manufacturing of recuperators. Generally, a metallic cost-effective primary-surface recuperator with high effectiveness and low pressure drop is a currently optimal option for a micro gas turbine of an efficiency of ∼30%, while a ceramic recuperator is suggested for a high efficiency micro gas turbine (e.g. 40%).

Suggested Citation

  • Xiao, Gang & Yang, Tianfeng & Liu, Huanlei & Ni, Dong & Ferrari, Mario Luigi & Li, Mingchun & Luo, Zhongyang & Cen, Kefa & Ni, Mingjiang, 2017. "Recuperators for micro gas turbines: A review," Applied Energy, Elsevier, vol. 197(C), pages 83-99.
  • Handle: RePEc:eee:appene:v:197:y:2017:i:c:p:83-99
    DOI: 10.1016/j.apenergy.2017.03.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917303367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiayi, Huang & Chuanwen, Jiang & Rong, Xu, 2008. "A review on distributed energy resources and MicroGrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2472-2483, December.
    2. Sayyaadi, Hoseyn & Aminian, Hamid Reza, 2010. "Design and optimization of a non-TEMA type tubular recuperative heat exchanger used in a regenerative gas turbine cycle," Energy, Elsevier, vol. 35(4), pages 1647-1657.
    3. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2012. "Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints," Energy, Elsevier, vol. 46(1), pages 42-50.
    4. Pandey, Shive Dayal & Nema, V.K., 2011. "An experimental investigation of exergy loss reduction in corrugated plate heat exchanger," Energy, Elsevier, vol. 36(5), pages 2997-3001.
    5. Kurtbas, İrfan & Durmus̨, Aydın, 2004. "Efficiency and exergy analysis of a new solar air heater," Renewable Energy, Elsevier, vol. 29(9), pages 1489-1501.
    6. Ferrari, Mario L. & Sorce, Alessandro & Pascenti, Matteo & Massardo, Aristide F., 2011. "Recuperator dynamic performance: Experimental investigation with a microgas turbine test rig," Applied Energy, Elsevier, vol. 88(12), pages 5090-5096.
    7. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    8. Zhou, Guo-Yan & Wu, En & Tu, Shan-Tung, 2014. "Optimum selection of compact heat exchangers using non-structural fuzzy decision method," Applied Energy, Elsevier, vol. 113(C), pages 1801-1809.
    9. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    10. Azad, Abazar Vahdat & Amidpour, Majid, 2011. "Economic optimization of shell and tube heat exchanger based on constructal theory," Energy, Elsevier, vol. 36(2), pages 1087-1096.
    11. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    12. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    2. Ding, Chenwei & Wu, Yuwen & Huang, Yakun & Zheng, Quan & Li, Qun & Xu, Gao & Kang, Chaohui & Weng, Chunsheng, 2023. "Wave mode analysis of a turbine guide vane-integrated rotating detonation combustor based on instantaneous frequency identification," Energy, Elsevier, vol. 284(C).
    3. Zhang, Chengyu & Gümmer, Volker, 2020. "Multi-objective optimization and system evaluation of recuperated helicopter turboshaft engines," Energy, Elsevier, vol. 191(C).
    4. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Cai, Jun & Huai, Xiulan & Xi, Wenxuan, 2018. "An optimal design approach for the annular involute-profile cross wavy primary surface recuperator in microturbine and an application case study," Energy, Elsevier, vol. 153(C), pages 80-89.
    6. Huadong Jiang & Fu Chen & Chonghai Huang & Jianyang Yu & Yanping Song & Juanshu Zhang, 2023. "Numerical Study of the Influence of Different Bending Shapes on the Heat Transfer Characteristics of Annular Cross Wavy Primary Surface Recuperator (CW-PSR)," Energies, MDPI, vol. 16(24), pages 1-25, December.
    7. Rovense, Francesco & Sebastián, Andrés & Abbas, Rubén & Romero, Manuel & González-Aguilar, José, 2023. "Performance map analysis of a solar-driven and fully unfired closed-cycle micro gas turbine," Energy, Elsevier, vol. 263(PB).
    8. Coppitters, Diederik & Contino, Francesco & El-Baz, Ahmed & Breuhaus, Peter & De Paepe, Ward, 2020. "Techno-economic feasibility study of a solar-powered distributed cogeneration system producing power and distillate water: Sensitivity and exergy analysis," Renewable Energy, Elsevier, vol. 150(C), pages 1089-1097.
    9. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Gavagnin, Giacomo & Rech, Sergio & Sánchez, David & Lazzaretto, Andrea, 2018. "Optimum design and performance of a solar dish microturbine using tailored component characteristics," Applied Energy, Elsevier, vol. 231(C), pages 660-676.
    11. Xiaochun Zhao & Xianghua Huang & Tianqian Xia, 2020. "Research on Modeling of a Micro Variable-Pitch Turboprop Engine Based on Rig Test Data," Energies, MDPI, vol. 13(7), pages 1-12, April.
    12. Pashchenko, Dmitry, 2022. "Natural gas reforming in thermochemical waste-heat recuperation systems: A review," Energy, Elsevier, vol. 251(C).
    13. Wei Wang & Liang Ding & Fangming Han & Yong Shuai & Bingxi Li & Bengt Sunden, 2022. "Parametric Study on Thermo-Hydraulic Performance of NACA Airfoil Fin PCHEs Channels," Energies, MDPI, vol. 15(14), pages 1-15, July.
    14. Kwon, Hyun Min & Moon, Seong Won & Kim, Tong Seop & Kang, Do Won, 2020. "Performance enhancement of the gas turbine combined cycle by simultaneous reheating, recuperation, and coolant inter-cooling," Energy, Elsevier, vol. 207(C).
    15. Yongming Zhang & Zhe Yan & Li Li & Jiawei Yao, 2018. "A Hybrid Building Power Distribution System in Consideration of Supply and Demand-Side: A Short Overview and a Case Study," Energies, MDPI, vol. 11(11), pages 1-19, November.
    16. Roberto Capata & Francesco Tatti, 2020. "Designing, Prototyping, Assembling and Costs Analysis of a Gas Turbine Hybrid Vehicle," Energies, MDPI, vol. 13(18), pages 1-36, September.
    17. Tilocca, Giuseppe & Sánchez, David & Torres-García, Miguel, 2023. "Application of the theory of constraints to unveil the root causes of the limited market penetration of micro gas turbine systems," Energy, Elsevier, vol. 278(C).
    18. Zhou, Xin & Xu, Haoran & Xiang, Duo & Chen, Jinli & Xiao, Gang, 2022. "Design and modeling of a honeycomb ceramic thermal energy storage for a solar thermal air-Brayton cycle system," Energy, Elsevier, vol. 239(PD).
    19. Chen, Jinli & Xiao, Gang & Ferrari, Mario Luigi & Yang, Tianfeng & Ni, Mingjiang & Cen, Kefa, 2020. "Dynamic simulation of a solar-hybrid microturbine system with experimental validation of main parts," Renewable Energy, Elsevier, vol. 154(C), pages 187-200.
    20. Panupon Trairat & Sakda Somkun & Tanakorn Kaewchum & Tawat Suriwong & Pisit Maneechot & Teerapon Panpho & Wikarn Wansungnern & Sathit Banthuek & Bongkot Prasit & Tanongkiat Kiatsiriroat, 2023. "Grid Integration of Livestock Biogas Using Self-Excited Induction Generator and Spark-Ignition Engine," Energies, MDPI, vol. 16(13), pages 1-23, June.
    21. Dong, Pengcheng & Tang, Hailong & Chen, Min & Zou, Zhengping, 2018. "Overall performance design of paralleled heat release and compression system for hypersonic aeroengine," Applied Energy, Elsevier, vol. 220(C), pages 36-46.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    2. Francesco Pasimeni, 2017. "Adoption and Diffusion of Micro-Grids in Italy. An Analysis of Regional Factors Using Agent-Based Modelling," SPRU Working Paper Series 2017-09, SPRU - Science Policy Research Unit, University of Sussex Business School.
    3. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    4. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    5. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    6. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    7. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    8. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    10. Tan, Wen-Shan & Hassan, Mohammad Yusri & Majid, Md Shah & Abdul Rahman, Hasimah, 2013. "Optimal distributed renewable generation planning: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 626-645.
    11. Basu, Ashoke Kumar & Chowdhury, S.P. & Chowdhury, S. & Paul, S., 2011. "Microgrids: Energy management by strategic deployment of DERs—A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4348-4356.
    12. Yildiz, Özgür, 2016. "Public-private partnerships, incomplete contracts, and distributional fairness – when payments matter," MPRA Paper 74552, University Library of Munich, Germany.
    13. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    14. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    15. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    16. Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
    17. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    18. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    19. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    20. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:197:y:2017:i:c:p:83-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.