IDEAS home Printed from
   My bibliography  Save this article

Constructal design and optimization of a dual pressure heat recovery steam generator


  • Mehrgoo, Morteza
  • Amidpour, Majid


Optimum design of the Heat Recovery Steam Generator (HRSG) has noticeable effects on the thermal efficiency of the combined cycle power plants. In this paper, constructal design of a dual pressure HRSG is proposed. It is shown how to simultaneously optimize the operating and geometric design parameters of the HRSG by using the constructal theory. Considering the minimum total entropy generation as objective function, optimum parameters of the HRSG unit are derived by using the genetic algorithm method under the fixed total volume condition. The optimized total volume, aspect ratios of the units, the number of tubes through the length and width, the heat transfer area of the HRSG and thermodynamic properties are significant features of the flow configuration resulted from constructal design. Optimal aspect ratios of the units are correlated to the pressure and temperature and effects of these variables on the main geometric characteristics of HRSG are obtained. The results show that there is an optimum value for total volume of the HRSG and most of the overall heat transfer coefficient (UA) are allocated to the evaporators. Also, number of the tubes in the longitudinal direction are fewer than the number of tubes in the transverse direction.

Suggested Citation

  • Mehrgoo, Morteza & Amidpour, Majid, 2017. "Constructal design and optimization of a dual pressure heat recovery steam generator," Energy, Elsevier, vol. 124(C), pages 87-99.
  • Handle: RePEc:eee:energy:v:124:y:2017:i:c:p:87-99
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
    2. Carapellucci, Roberto & Giordano, Lorena, 2013. "A comparison between exergetic and economic criteria for optimizing the heat recovery steam generators of gas-steam power plants," Energy, Elsevier, vol. 58(C), pages 458-472.
    3. Guo, Jiangfeng & Xu, Mingtian & Cheng, Lin, 2010. "Thermodynamic analysis of waste heat power generation system," Energy, Elsevier, vol. 35(7), pages 2824-2835.
    4. Casarosa, C. & Donatini, F. & Franco, A., 2004. "Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants," Energy, Elsevier, vol. 29(3), pages 389-414.
    5. Bassily, A.M., 2005. "Modeling, numerical optimization, and irreversibility reduction of a dual-pressure reheat combined-cycle," Applied Energy, Elsevier, vol. 81(2), pages 127-151, June.
    6. Manassaldi, Juan I. & Arias, Ana M. & Scenna, Nicolás J. & Mussati, Miguel C. & Mussati, Sergio F., 2016. "A discrete and continuous mathematical model for the optimal synthesis and design of dual pressure heat recovery steam generators coupled to two steam turbines," Energy, Elsevier, vol. 103(C), pages 807-823.
    7. Bahiraei, Mehdi & Hangi, Morteza & Saeedan, Mahdi, 2015. "A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles," Energy, Elsevier, vol. 93(P2), pages 2229-2240.
    8. Azad, Abazar Vahdat & Amidpour, Majid, 2011. "Economic optimization of shell and tube heat exchanger based on constructal theory," Energy, Elsevier, vol. 36(2), pages 1087-1096.
    9. Franco, Alessandro & Giannini, Nicola, 2006. "A general method for the optimum design of heat recovery steam generators," Energy, Elsevier, vol. 31(15), pages 3342-3361.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Feng, Huijun & Xie, Zhuojun & Chen, Lingen & Wu, Zhixiang & Xia, Shaojun, 2020. "Constructal design for supercharged boiler superheater," Energy, Elsevier, vol. 191(C).
    2. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    3. Vidoza, Jorge A. & Andreasen, Jesper Graa & Haglind, Fredrik & dos Reis, Max M.L. & Gallo, Waldyr, 2019. "Design and optimization of power hubs for Brazilian off-shore oil production units," Energy, Elsevier, vol. 176(C), pages 656-666.
    4. Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
    5. Wu, Zhixiang & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Cai, Cunguang, 2019. "Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory," Energy, Elsevier, vol. 181(C), pages 974-984.
    6. Kler, Aleksandr M. & Zharkov, Pavel V. & Epishkin, Nikolai O., 2019. "Parametric optimization of supercritical power plants using gradient methods," Energy, Elsevier, vol. 189(C).


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:124:y:2017:i:c:p:87-99. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.