IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i5p778-794.html
   My bibliography  Save this article

Modeling, numerical optimization, and irreversibility reduction of a triple-pressure reheat combined cycle

Author

Listed:
  • Bassily, A.M.

Abstract

The main methods for improving the efficiency of the combined cycle are: increasing the inlet temperature of the gas turbine (TIT), reducing the irreversibility of the heat recovery steam generator (HRSG), and optimization. In this paper, modeling and optimization of the triple-pressure reheat combined cycle as well as irreversibility reduction of its HRSG are considered. Constraints were set on the minimum temperature difference for pinch points (PPm), the temperature difference for superheat approach, the steam turbine inlet temperature and pressure, the stack temperature, and the dryness fraction at steam turbine outlet. The triple-pressure reheat combined cycle was optimized at 41 different maximum values of TIT using two different methods; the direct search and the variable metric. A feasible technique to reduce the irreversibility of the HRSG of the combined cycle was introduced. The optimized and the reduced-irreversibility triple-pressure reheat combined cycles were compared with the regularly designed triple-pressure reheat combined cycle, which is the typical design for a commercial combined cycle. The effects of varying the TIT on the performance of all cycles were presented and discussed. The results indicate that the optimized triple-pressure reheat combined cycle is up to 1.7% higher in efficiency than the reduced-irreversibility triple-pressure reheat combined cycle, which is 1.9–2.1% higher in efficiency than the regularly designed triple-pressure reheat combined cycle when all cycles are compared at the same values of TIT and PPm. The optimized and reduced-irreversibility combined cycles were compared with the most efficient commercially available combined cycle at the same value of TIT.

Suggested Citation

  • Bassily, A.M., 2007. "Modeling, numerical optimization, and irreversibility reduction of a triple-pressure reheat combined cycle," Energy, Elsevier, vol. 32(5), pages 778-794.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:5:p:778-794
    DOI: 10.1016/j.energy.2006.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206001137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Franco, Alessandro & Casarosa, Claudio, 2004. "Thermoeconomic evaluation of the feasibility of highly efficient combined cycle power plants," Energy, Elsevier, vol. 29(12), pages 1963-1982.
    2. Bassily, A.M., 2005. "Modeling, numerical optimization, and irreversibility reduction of a dual-pressure reheat combined-cycle," Applied Energy, Elsevier, vol. 81(2), pages 127-151, June.
    3. Bassily, A. M., 2004. "Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling," Applied Energy, Elsevier, vol. 77(3), pages 249-272, March.
    4. Casarosa, C. & Donatini, F. & Franco, A., 2004. "Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants," Energy, Elsevier, vol. 29(3), pages 389-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjay,, 2011. "Investigation of effect of variation of cycle parameters on thermodynamic performance of gas-steam combined cycle," Energy, Elsevier, vol. 36(1), pages 157-167.
    2. Rovira, Antonio & Barbero, Rubén & Montes, María José & Abbas, Rubén & Varela, Fernando, 2016. "Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems," Applied Energy, Elsevier, vol. 162(C), pages 990-1000.
    3. Srinivas, T., 2009. "Study of a deaerator location in triple-pressure reheat combined power cycle," Energy, Elsevier, vol. 34(9), pages 1364-1371.
    4. Bracco, Stefano & Siri, Silvia, 2010. "Exergetic optimization of single level combined gas–steam power plants considering different objective functions," Energy, Elsevier, vol. 35(12), pages 5365-5373.
    5. Pan, Ming & Aziz, Farah & Li, Baohong & Perry, Simon & Zhang, Nan & Bulatov, Igor & Smith, Robin, 2016. "Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture," Applied Energy, Elsevier, vol. 161(C), pages 695-706.
    6. Chen, Yu-Zhi & Li, Yi-Guang & Newby, Mike A., 2019. "Performance simulation of a parallel dual-pressure once-through steam generator," Energy, Elsevier, vol. 173(C), pages 16-27.
    7. Bassily, A.M., 2008. "Enhancing the efficiency and power of the triple-pressure reheat combined cycle by means of gas reheat, gas recuperation, and reduction of the irreversibility in the heat recovery steam generator," Applied Energy, Elsevier, vol. 85(12), pages 1141-1162, December.
    8. Mertens, Nicolas & Alobaid, Falah & Starkloff, Ralf & Epple, Bernd & Kim, Hyun-Gee, 2015. "Comparative investigation of drum-type and once-through heat recovery steam generator during start-up," Applied Energy, Elsevier, vol. 144(C), pages 250-260.
    9. Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
    10. Yanfeng Li & Jingru Liu & Guohe Huang, 2022. "Pressure Drop Optimization of the Main Steam and Reheat Steam System of a 1000 MW Secondary Reheat Unit," Energies, MDPI, vol. 15(9), pages 1-15, April.
    11. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Han, Yixiao & Liang, Ying, 2018. "Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion," Applied Energy, Elsevier, vol. 212(C), pages 465-477.
    12. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    13. Oh, Hyun-Taek & Lee, Woo-Sung & Ju, Youngsan & Lee, Chang-Ha, 2019. "Performance evaluation and carbon assessment of IGCC power plant with coal quality," Energy, Elsevier, vol. 188(C).
    14. Khalili, Sufia & Jafarian Dehkordi, Ali & Giahi, Mohammad Hossein, 2015. "Investigating the effect of channel angle of a subsonic MHD (Magneto-Hydro-Dynamic) generator on optimum efficiency of a triple combined cycle," Energy, Elsevier, vol. 85(C), pages 543-555.
    15. Nadir, Mahmoud & Ghenaiet, Adel, 2015. "Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures," Energy, Elsevier, vol. 86(C), pages 685-695.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bassily, A.M., 2008. "Enhancing the efficiency and power of the triple-pressure reheat combined cycle by means of gas reheat, gas recuperation, and reduction of the irreversibility in the heat recovery steam generator," Applied Energy, Elsevier, vol. 85(12), pages 1141-1162, December.
    2. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    3. Srinivas, T., 2009. "Study of a deaerator location in triple-pressure reheat combined power cycle," Energy, Elsevier, vol. 34(9), pages 1364-1371.
    4. Mehrgoo, Morteza & Amidpour, Majid, 2017. "Constructal design and optimization of a dual pressure heat recovery steam generator," Energy, Elsevier, vol. 124(C), pages 87-99.
    5. Kotowicz, Janusz & Bartela, Łukasz, 2010. "The influence of economic parameters on the optimal values of the design variables of a combined cycle plant," Energy, Elsevier, vol. 35(2), pages 911-919.
    6. Matjanov, Erkinjon, 2020. "Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP," Energy, Elsevier, vol. 192(C).
    7. Bassily, A.M., 2005. "Modeling, numerical optimization, and irreversibility reduction of a dual-pressure reheat combined-cycle," Applied Energy, Elsevier, vol. 81(2), pages 127-151, June.
    8. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
    9. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    10. Mohapatra, Alok Ku & Sanjay,, 2014. "Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance," Energy, Elsevier, vol. 68(C), pages 191-203.
    11. Nadir, Mahmoud & Ghenaiet, Adel, 2015. "Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures," Energy, Elsevier, vol. 86(C), pages 685-695.
    12. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    13. Park, Min Young & Shin, Serin & Kim, Eung Soo, 2015. "Effective energy management by combining gas turbine cycles and forward osmosis desalination process," Applied Energy, Elsevier, vol. 154(C), pages 51-61.
    14. Singh, Omendra Kumar, 2016. "Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system," Applied Energy, Elsevier, vol. 180(C), pages 867-879.
    15. Bracco, Stefano & Siri, Silvia, 2010. "Exergetic optimization of single level combined gas–steam power plants considering different objective functions," Energy, Elsevier, vol. 35(12), pages 5365-5373.
    16. Mohtaram, Soheil & Sun, HongGuang & Lin, Ji & Chen, Wen & Sun, Yonghui, 2020. "Multi-Objective Evolutionary Optimization & 4E analysis of a bulky combined cycle power plant by CO2/ CO/ NOx reduction and cost controlling targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    17. Sun, Zhixin & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2012. "Dynamic optimal design of a power generation system utilizing industrial waste heat considering parameter fluctuations of exhaust gas," Energy, Elsevier, vol. 44(1), pages 1035-1043.
    18. Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
    19. Attila R. Imre & Réka Kustán & Axel Groniewsky, 2019. "Thermodynamic Selection of the Optimal Working Fluid for Organic Rankine Cycles," Energies, MDPI, vol. 12(10), pages 1-15, May.
    20. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process," Energy Policy, Elsevier, vol. 37(3), pages 778-787, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:5:p:778-794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.