IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp51-61.html
   My bibliography  Save this article

Effective energy management by combining gas turbine cycles and forward osmosis desalination process

Author

Listed:
  • Park, Min Young
  • Shin, Serin
  • Kim, Eung Soo

Abstract

In the recent years, attempts to improve the thermal efficiency of the gas turbine cycles have been made. In order to enhance the energy management of the gas turbine cycle, a new integration concept has been proposed; integration of gas turbine cycle and forward osmosis desalination process. The combination of the gas turbine cycle and the forward osmosis (FO) desalination process basically implies the coupling of the waste heat from the gas turbine cycle to the draw solute recovery system in the FO process which is the most energy consuming part of the whole FO process. By doing this, a strong system that is capable of producing water and electricity with very little waste heat can be achieved. The feasibility of this newly proposed system was analyzed using UNISIM program and the OLI property package. For the analysis, the thermolytic draw solutes which has been suggested by other research groups have been selected and studied. Sensitivity analysis was conducted on the integration system in order to understand and identify the key parameters of the integrated system. And the integrated system was further evaluated by comparing the gain output ratio (GOR) values with the conventional desalination technologies such as multi stage flash (MSF) and multi effect distillation (MED). The suggested integrated system was calculated to have a GOR of 14.8, while the MSF and MED when integrated to the gas turbine cycle showed GOR value of 12. It should also be noted that the energy utilization of the suggested integrated system is significantly higher by 27.1% and 63.8% than those of the MSF–gas turbine and MED–gas turbine systems, respectively. The noticeable enhancement in both the GOR and waste heat utilization of the suggested system resulted in 3.5 times higher water production rate than the MSF integrated system.

Suggested Citation

  • Park, Min Young & Shin, Serin & Kim, Eung Soo, 2015. "Effective energy management by combining gas turbine cycles and forward osmosis desalination process," Applied Energy, Elsevier, vol. 154(C), pages 51-61.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:51-61
    DOI: 10.1016/j.apenergy.2015.04.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bassily, A. M., 2004. "Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling," Applied Energy, Elsevier, vol. 77(3), pages 249-272, March.
    2. Poullikkas, Andreas, 2005. "An overview of current and future sustainable gas turbine technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 409-443, October.
    3. Poullikkas, Andreas, 2001. "A Technology Selection Algorithm for Independent Power Producers," The Electricity Journal, Elsevier, vol. 14(6), pages 80-84, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
    2. Abbas, Khizar & Li, Shixiang & Xu, Deyi & Baz, Khan & Rakhmetova, Aigerim, 2020. "Do socioeconomic factors determine household multidimensional energy poverty? Empirical evidence from South Asia," Energy Policy, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venizelou, Venizelos & Poullikkas, Andreas, 2025. "The effect of carbon price towards green hydrogen power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    2. Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model," Applied Energy, Elsevier, vol. 149(C), pages 338-353.
    3. Poullikkas, Andreas, 2007. "Implementation of distributed generation technologies in isolated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 30-56, January.
    4. Christou, Costas & Hadjipaschalis, Ioannis & Poullikkas, Andreas, 2008. "Assessment of integrated gasification combined cycle technology competitiveness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2459-2471, December.
    5. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    6. Matjanov, Erkinjon, 2020. "Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP," Energy, Elsevier, vol. 192(C).
    7. Poullikkas, Andreas, 2005. "An overview of current and future sustainable gas turbine technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 409-443, October.
    8. Bassily, A.M., 2005. "Modeling, numerical optimization, and irreversibility reduction of a dual-pressure reheat combined-cycle," Applied Energy, Elsevier, vol. 81(2), pages 127-151, June.
    9. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    10. S. Hamed Fatemi Alavi & Amirreza Javaherian & S. M. S. Mahmoudi & Saeed Soltani & Marc A. Rosen, 2023. "Coupling a Gas Turbine Bottoming Cycle Using CO 2 as the Working Fluid with a Gas Cycle: Exergy Analysis Considering Combustion Chamber Steam Injection," Clean Technol., MDPI, vol. 5(3), pages 1-25, September.
    11. Mohapatra, Alok Ku & Sanjay,, 2014. "Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance," Energy, Elsevier, vol. 68(C), pages 191-203.
    12. Bassily, A.M., 2007. "Modeling, numerical optimization, and irreversibility reduction of a triple-pressure reheat combined cycle," Energy, Elsevier, vol. 32(5), pages 778-794.
    13. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    14. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    15. Ali, Usman & Font-Palma, Carolina & Nikpey Somehsaraei, Homam & Mansouri Majoumerd, Mohammad & Akram, Muhammad & Finney, Karen N. & Best, Thom & Mohd Said, Nassya B. & Assadi, Mohsen & Pourkashanian, , 2017. "Benchmarking of a micro gas turbine model integrated with post-combustion CO2 capture," Energy, Elsevier, vol. 126(C), pages 475-487.
    16. Li, Minzhi & Jiang, Xi Zhuo & Zheng, Danxing & Zeng, Guangbiao & Shi, Lin, 2016. "Thermodynamic boundaries of energy saving in conventional CCHP (Combined Cooling, Heating and Power) systems," Energy, Elsevier, vol. 94(C), pages 243-249.
    17. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    18. Bassily, A.M., 2008. "Enhancing the efficiency and power of the triple-pressure reheat combined cycle by means of gas reheat, gas recuperation, and reduction of the irreversibility in the heat recovery steam generator," Applied Energy, Elsevier, vol. 85(12), pages 1141-1162, December.
    19. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    20. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:51-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.