IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v66y2016icp537-555.html
   My bibliography  Save this article

Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling

Author

Listed:
  • Mahmood, Muhammad H.
  • Sultan, Muhammad
  • Miyazaki, Takahiko
  • Koyama, Shigeru
  • Maisotsenko, Valeriy S.

Abstract

The Maisotsenko Cycle (M-Cycle) is a thermodynamic conception which captures energy from the air by utilizing the psychrometric renewable energy available from the latent heat of water evaporating into the air. The cycle is well-known in the air-conditioning (AC) field due to its potential of dew-point evaporative cooling. However, its applicability has been recently expanded in several energy recovery applications. Therefore, the present study provides the overview of M-Cycle and its application in various heating, ventilation, and air-conditioning (HVAC) systems; cooling systems; and gas turbine power cycles. Principle and features of the M-Cycle are discussed in comparison with conventional evaporative cooling, and consequently the thermodynamic limitation of the cycle is highlighted. It is reported that the standalone M-Cycle AC (MAC) system can achieve the AC load efficiently when the ambient air humidity is not so high regardless of ambient air temperature. Various modifications in MAC system design have been reviewed in order to investigate the M-Cycle applicability in humid regions. It is found that the hybrid, ejector, and desiccant based MAC systems enable a huge energy saving potential to achieve the sensible and latent load of AC in humid regions. Similarly, the overall system performance is significantly improved when the M-Cycle is utilized in cooling towers and evaporative condensers. Furthermore, the M-Cycle conception in gas turbine cycles has been realized recently in which the M-Cycle recuperator provides not only hot and humidified air for combustion but also recovers the heat from the turbine exhaust gases. The M-Cycle nature helps to provide the cooled air for turbine inlet air cooling and to control the pollution by reducing NOx formation during combustion. The study reviews three distinguished Maisotsenko gas turbine power cycles and their comparison with the conventional cycles, which shows the M-Cycle significance in power industry.

Suggested Citation

  • Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
  • Handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:537-555
    DOI: 10.1016/j.rser.2016.08.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116304361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.08.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    2. Zhan, Changhong & Duan, Zhiyin & Zhao, Xudong & Smith, Stefan & Jin, Hong & Riffat, Saffa, 2011. "Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings," Energy, Elsevier, vol. 36(12), pages 6790-6805.
    3. Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler," Energy, Elsevier, vol. 87(C), pages 663-677.
    4. Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
    5. Enteria, Napoleon & Yoshino, Hiroshi & Satake, Akira & Mochida, Akashi & Takaki, Rie & Yoshie, Ryuichiro & Baba, Seizo, 2010. "Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production," Applied Energy, Elsevier, vol. 87(2), pages 478-486, February.
    6. D. Buyadgie & O. Buyadgie & O. Drakhnia & P. Brodetsky & V. Maisotsenko, 2015. "Solar low-pressure turbo-ejector Maisotsenko cycle-based power system for electricity, heating, cooling and distillation," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(2), pages 157-164.
    7. Chen, Xiangjie & Omer, Siddig & Worall, Mark & Riffat, Saffa, 2013. "Recent developments in ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 629-651.
    8. Xuan, Y.M. & Xiao, F. & Niu, X.F. & Huang, X. & Wang, S.W., 2012. "Research and application of evaporative cooling in China: A review (I) – Research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3535-3546.
    9. Abdulateef, J.M. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review on solar-driven ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1338-1349, August.
    10. Qi, Ronghui & Lu, Lin, 2014. "Energy consumption and optimization of internally cooled/heated liquid desiccant air-conditioning system: A case study in Hong Kong," Energy, Elsevier, vol. 73(C), pages 801-808.
    11. Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model," Applied Energy, Elsevier, vol. 149(C), pages 338-353.
    12. Tyagi, S.K. & Pandey, A.K. & Pant, P.C. & Tyagi, V.V., 2012. "Formation, potential and abatement of plume from wet cooling towers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3409-3429.
    13. Tyagi, S.K. & Wang, Shengwei & Park, S.R. & Sharma, Atul, 2008. "Economic considerations and cost comparisons between the heat pumps and solar collectors for the application of plume control from wet cooling towers of commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2194-2210, October.
    14. Zhu, Jun & Chen, Wu, 2014. "Energy and exergy performance analysis of a marine rotary desiccant air-conditioning system based on orthogonal experiment," Energy, Elsevier, vol. 77(C), pages 953-962.
    15. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    16. Mohammad, Abdulrahman Th. & Bin Mat, Sohif & Sulaiman, M.Y. & Sopian, K. & Al-abidi, Abduljalil A., 2013. "Survey of hybrid liquid desiccant air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 186-200.
    17. Cui, X. & Chua, K.J. & Yang, W.M., 2014. "Numerical simulation of a novel energy-efficient dew-point evaporative air cooler," Applied Energy, Elsevier, vol. 136(C), pages 979-988.
    18. Xuan, Y.M. & Xiao, F. & Niu, X.F. & Huang, X. & Wang, S.W., 2012. "Research and applications of evaporative cooling in China: A review (II)—Systems and equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3523-3534.
    19. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.
    20. Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
    21. Lee, S.H. & Lee, W.L., 2013. "Site verification and modeling of desiccant-based system as an alternative to conventional air-conditioning systems for wet markets," Energy, Elsevier, vol. 55(C), pages 1076-1083.
    22. Anisimov, Sergey & Pandelidis, Demis & Jedlikowski, Andrzej & Polushkin, Vitaliy, 2014. "Performance investigation of a M (Maisotsenko)-cycle cross-flow heat exchanger used for indirect evaporative cooling," Energy, Elsevier, vol. 76(C), pages 593-606.
    23. Muneer, T. & Asif, M., 2007. "Prospects for secure and sustainable electricity supply for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 654-671, May.
    24. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2013. "Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions," Applied Energy, Elsevier, vol. 106(C), pages 355-364.
    25. D. Buyadgie & O. Buyadgie & S. Artemenko & A. Chamchine & O. Drakhnia, 2012. "Conceptual design of binary/multicomponent fluid ejector refrigeration systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 7(2), pages 120-127, April.
    26. Asif, M., 2009. "Sustainable energy options for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 903-909, May.
    27. Ghazikhani, M. & Khazaee, I. & Abdekhodaie, E., 2014. "Exergy analysis of gas turbine with air bottoming cycle," Energy, Elsevier, vol. 72(C), pages 599-607.
    28. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    29. Pierobon, Leonardo & Haglind, Fredrik, 2014. "Design and optimization of air bottoming cycles for waste heat recovery in off-shore platforms," Applied Energy, Elsevier, vol. 118(C), pages 156-165.
    30. Poullikkas, Andreas, 2005. "An overview of current and future sustainable gas turbine technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 409-443, October.
    31. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    32. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    33. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    34. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    35. He, Suoying & Gurgenci, Hal & Guan, Zhiqiang & Huang, Xiang & Lucas, Manuel, 2015. "A review of wetted media with potential application in the pre-cooling of natural draft dry cooling towers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 407-422.
    36. Anisimov, Sergey & Pandelidis, Demis & Danielewicz, Jan, 2015. "Numerical study and optimization of the combined indirect evaporative air cooler for air-conditioning systems," Energy, Elsevier, vol. 80(C), pages 452-464.
    37. Bianchi, M. & De Pascale, A., 2011. "Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources," Applied Energy, Elsevier, vol. 88(5), pages 1500-1509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    2. Zanchini, Enzo & Naldi, Claudia, 2019. "Energy saving obtainable by applying a commercially available M-cycle evaporative cooling system to the air conditioning of an office building in North Italy," Energy, Elsevier, vol. 179(C), pages 975-988.
    3. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the exergy analysis of the counter-flow dew point evaporative cooler," Energy, Elsevier, vol. 165(PB), pages 958-971.
    4. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    5. Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru, 2018. "Optimization of adsorption isotherm types for desiccant air-conditioning applications," Renewable Energy, Elsevier, vol. 121(C), pages 441-450.
    6. Jan Taler & Bartosz Jagieła & Magdalena Jaremkiewicz, 2022. "Overview of the M-Cycle Technology for Air Conditioning and Cooling Applications," Energies, MDPI, vol. 15(5), pages 1-19, March.
    7. Zhu, Guangya & Chow, T.T. & Fong, K.F. & Lee, C.K., 2019. "Comparative study on humidified gas turbine cycles with different air saturator designs," Applied Energy, Elsevier, vol. 254(C).
    8. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
    9. Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    10. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2018. "Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler," Applied Energy, Elsevier, vol. 228(C), pages 2176-2194.
    11. Zhang, Qing & Wang, Yuzhang & Jiang, Jiangjun & Weng, Shilie & Cao, Xiuling, 2022. "Coupling effect of key parameters of heat recovery components on the HAT cycle performance," Energy, Elsevier, vol. 238(PC).
    12. Zhou, Yuanyuan & Zhang, Tao & Wang, Fang & Yu, Yanshun, 2018. "Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system," Energy, Elsevier, vol. 162(C), pages 299-308.
    13. Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
    14. Li, Wuyan & Li, Yongcai & Shi, Wenxing & Lu, Jun, 2021. "Energy and exergy study on indirect evaporative cooler used in exhaust air heat recovery," Energy, Elsevier, vol. 235(C).
    15. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Livas-García, A. & Xamán, J. & Bassam, A. & Maisotsenko, Valeriy, 2021. "Projecting global water footprints diminution of a dew-point cooling system: Sustainability approach assisted with energetic and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    16. Yugang Wang & Xiang Huang & Li Li, 2018. "Comparative Study of the Cross-Flow Heat and Mass Exchangers for Indirect Evaporative Cooling Using Numerical Methods," Energies, MDPI, vol. 11(12), pages 1-14, December.
    17. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    18. Muhammad Aleem & Ghulam Hussain & Muhammad Sultan & Takahiko Miyazaki & Muhammad H. Mahmood & Muhammad I. Sabir & Abdul Nasir & Faizan Shabir & Zahid M. Khan, 2020. "Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(21), pages 1-23, October.
    19. Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
    20. Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.
    21. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    22. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Aleem & Ghulam Hussain & Muhammad Sultan & Takahiko Miyazaki & Muhammad H. Mahmood & Muhammad I. Sabir & Abdul Nasir & Faizan Shabir & Zahid M. Khan, 2020. "Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(21), pages 1-23, October.
    2. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    3. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    4. Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
    5. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Jan Taler & Bartosz Jagieła & Magdalena Jaremkiewicz, 2022. "Overview of the M-Cycle Technology for Air Conditioning and Cooling Applications," Energies, MDPI, vol. 15(5), pages 1-19, March.
    7. Chen, Yi & Yang, Hongxing & Luo, Yimo, 2017. "Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation," Applied Energy, Elsevier, vol. 194(C), pages 440-453.
    8. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    9. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    10. Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2016. "Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system," Renewable Energy, Elsevier, vol. 86(C), pages 785-795.
    11. Baniyounes, Ali M. & Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2013. "An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 781-804.
    12. Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
    13. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Hadeed Ashraf & Muhammad Sultan & Redmond R. Shamshiri & Farrukh Abbas & Muhammad Farooq & Uzair Sajjad & Hafiz Md-Tahir & Muhammad H. Mahmood & Fiaz Ahmad & Yousaf R. Taseer & Aamir Shahzad & Badar M, 2021. "Dynamic Evaluation of Desiccant Dehumidification Evaporative Cooling Options for Greenhouse Air-Conditioning Application in Multan (Pakistan)," Energies, MDPI, vol. 14(4), pages 1-21, February.
    15. Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru, 2018. "Optimization of adsorption isotherm types for desiccant air-conditioning applications," Renewable Energy, Elsevier, vol. 121(C), pages 441-450.
    16. Ham, Sang-Woo & Jeong, Jae-Weon, 2016. "DPHX (dew point evaporative heat exchanger): System design and performance analysis," Energy, Elsevier, vol. 101(C), pages 132-145.
    17. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    19. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2018. "Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler," Applied Energy, Elsevier, vol. 228(C), pages 2176-2194.
    20. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:537-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.