IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i8p2194-2210.html
   My bibliography  Save this article

Economic considerations and cost comparisons between the heat pumps and solar collectors for the application of plume control from wet cooling towers of commercial buildings

Author

Listed:
  • Tyagi, S.K.
  • Wang, Shengwei
  • Park, S.R.
  • Sharma, Atul

Abstract

This communication presents a case study based on the economic considerations and comparisons between the heat pump and solar collector heating systems for the application and utility to control the visible plume from wet cooling towers of a huge commercial building in Hong Kong. A detail economic study for both cases, i.e. for heat pumps as well as for solar collectors is done and compared using different (capital and operational) costs, taking other constraints into account. The capital cost is the actual cost of the device, for example, for a heat pump it is the cost of the heat pump machine. For a solar collector it is the cost of all the components like the collector, pipes, pump, heat exchanger, etc. On the other hand, the operational cost is the cost that keeps the system working in good condition. For a heat pump, the cost of the input power to the compressor is the running cost, while the necessary maintenance and replacement of parts comes under other cost. Similarly, for a solar collector, the cost of the power consumed by the pump/compressor to circulate the working fluid is the running cost which is very less as compared to the former. It is found that all the costs are much lesser for a solar collector system while it is reverse in the case of an air-cooled geothermal heat pump system. Other comparisons between the electric and geothermal heat pump systems are also given among different possible options.

Suggested Citation

  • Tyagi, S.K. & Wang, Shengwei & Park, S.R. & Sharma, Atul, 2008. "Economic considerations and cost comparisons between the heat pumps and solar collectors for the application of plume control from wet cooling towers of commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2194-2210, October.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:8:p:2194-2210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00070-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Wei & Zhou, Jin & Xu, Wei & Zhang, Guoqiang, 2010. "Current status of ground-source heat pumps in China," Energy Policy, Elsevier, vol. 38(1), pages 323-332, January.
    2. Tyagi, S.K. & Pandey, A.K. & Pant, P.C. & Tyagi, V.V., 2012. "Formation, potential and abatement of plume from wet cooling towers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3409-3429.
    3. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    4. Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
    5. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2014. "Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower," Applied Energy, Elsevier, vol. 127(C), pages 172-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:8:p:2194-2210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.