IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v95y2016icp303-312.html
   My bibliography  Save this article

Theoretical analysis of a liquid desiccant based indirect evaporative cooling system

Author

Listed:
  • Cui, X.
  • Islam, M.R.
  • Mohan, B.
  • Chua, K.J.

Abstract

A compact desiccant-evaporative HMX (heat and mass exchanger) has been proposed by combining the benefits of the regenerative indirect evaporative cooling and the liquid desiccant dehumidification. In this design, the compact HMX was able to cool and dehumidify the product air simultaneously in a single unit. A computational model has been developed and validated using experimental data. The model displayed good agreement with the experimental findings with maximum discrepancy of 8%. The heat and mass transfer behavior was theoretically investigated to illustrate the detailed air treatment performance of the HMX. Simulations were performed to study the effect of several key parameters on the HMX's performance. Due to the effect of pre-cooling and pre-dehumidification, the working air showed improved cooling potential in the working channel. Consequently, the temperature of the product air could be reduced below the dew-point temperature of intake air. Simulation results showed that the outlet temperature of the product air was affected by the working-to-intake air flow rate ratio and the dimensionless channel length, while the outlet humidity ratio of the product air was influenced by the length of the liquid desiccant film and the dimensionless channel length.

Suggested Citation

  • Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
  • Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:303-312
    DOI: 10.1016/j.energy.2015.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Li-Zhi & Zhang, Ning, 2014. "A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation," Energy, Elsevier, vol. 65(C), pages 441-451.
    2. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Ding, Xudong, 2013. "A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 111(C), pages 449-455.
    3. Yuan, Fang & Chen, Qun, 2012. "A global optimization method for evaporative cooling systems based on the entransy theory," Energy, Elsevier, vol. 42(1), pages 181-191.
    4. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    5. Lychnos, G. & Davies, P.A., 2012. "Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates," Energy, Elsevier, vol. 40(1), pages 116-130.
    6. Islam, M.R. & Jahangeer, K.A. & Chua, K.J., 2015. "Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems," Energy, Elsevier, vol. 87(C), pages 390-399.
    7. Zhan, Changhong & Duan, Zhiyin & Zhao, Xudong & Smith, Stefan & Jin, Hong & Riffat, Saffa, 2011. "Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings," Energy, Elsevier, vol. 36(12), pages 6790-6805.
    8. Abdul-Wahab, S.A. & Zurigat, Y.H. & Abu-Arabi, M.K., 2004. "Predictions of moisture removal rate and dehumidification effectiveness for structured liquid desiccant air dehumidifier," Energy, Elsevier, vol. 29(1), pages 19-34.
    9. Hsu, Shyr Tzer & Lavan, Zalman & Worek, William M., 1989. "Optimization of wet-surface heat exchangers," Energy, Elsevier, vol. 14(11), pages 757-770.
    10. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    11. Luo, Yimo & Yang, Hongxing & Lu, Lin & Qi, Ronghui, 2014. "A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 587-599.
    12. Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
    13. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    14. Liu, X.H. & Jiang, Y. & Chang, X.M. & Yi, X.Q., 2007. "Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross-flow regenerator," Renewable Energy, Elsevier, vol. 32(10), pages 1623-1636.
    15. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    16. Kim, Min-Hwi & Park, Jun-Seok & Jeong, Jae-Weon, 2013. "Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system," Energy, Elsevier, vol. 59(C), pages 726-736.
    17. Cui, X. & Chua, K.J. & Yang, W.M., 2014. "Numerical simulation of a novel energy-efficient dew-point evaporative air cooler," Applied Energy, Elsevier, vol. 136(C), pages 979-988.
    18. Anisimov, Sergey & Pandelidis, Demis & Jedlikowski, Andrzej & Polushkin, Vitaliy, 2014. "Performance investigation of a M (Maisotsenko)-cycle cross-flow heat exchanger used for indirect evaporative cooling," Energy, Elsevier, vol. 76(C), pages 593-606.
    19. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2015. "Performance of two-stage rotary desiccant cooling system with different regeneration temperatures," Energy, Elsevier, vol. 80(C), pages 556-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zili & Zhang, Kaisheng & Lian, Zhiwei & Zhang, Huibo, 2016. "Sensitivity and stability analysis on the performance of ultrasonic atomization liquid desiccant dehumidification system," Energy, Elsevier, vol. 112(C), pages 1169-1183.
    2. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2018. "Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler," Applied Energy, Elsevier, vol. 228(C), pages 2176-2194.
    3. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    4. Zhang, Hongkuan & Ma, Hongting & Ma, Shuo, 2022. "Energy, exergy, economic and environmental analysis of an indirect evaporative cooling integrated with liquid dehumidification," Energy, Elsevier, vol. 253(C).
    5. Ali, Ameer & Ishaque, Kashif & Lashin, Aref & Al Arifi, Nassir, 2017. "Modeling of a liquid desiccant dehumidification system for close type greenhouse cultivation," Energy, Elsevier, vol. 118(C), pages 578-589.
    6. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Ferreiro Garcia, Ramon & Carril, Jose Carbia & Iglesias Garcia, Steven, 2017. "Low-grade heat-based thermal cycles unconstrained by the Carnot factor doing work by cooling," Energy, Elsevier, vol. 122(C), pages 204-213.
    8. Xin Cui & Le Sun & Sicong Zhang & Liwen Jin, 2019. "On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates," Energies, MDPI, vol. 12(23), pages 1-16, November.
    9. Kim, Min-Hwi & Dong, Hae-Won & Park, Joon-Young & Jeong, Jae-Weon, 2016. "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell," Applied Energy, Elsevier, vol. 180(C), pages 446-456.
    10. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    11. Li, Wuyan & Li, Yongcai & Shi, Wenxing & Lu, Jun, 2021. "Energy and exergy study on indirect evaporative cooler used in exhaust air heat recovery," Energy, Elsevier, vol. 235(C).
    12. Qian Chen & Muhammad Burhan & M Kum Ja & Muhammad Wakil Shahzad & Doskhan Ybyraiymkul & Hongfei Zheng & Xin Cui & Kim Choon Ng, 2022. "Hybrid Indirect Evaporative Cooling-Mechanical Vapor Compression System: A Mini-Review," Energies, MDPI, vol. 15(20), pages 1-17, October.
    13. Cheng, Qing & Zhang, Xiaosong & Jiao, Shun, 2017. "Influence of concentration difference between dilute cells and regenerate cells on the performance of electrodialysis regenerator," Energy, Elsevier, vol. 140(P1), pages 646-655.
    14. Dong, Hye-Won & Lee, Sung-Joon & Yoon, Dong-Seob & Park, Joon-Young & Jeong, Jae-Weon, 2017. "Impact of district heat source on primary energy savings of a desiccant-enhanced evaporative cooling system," Energy, Elsevier, vol. 123(C), pages 432-444.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    2. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    3. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    4. Ham, Sang-Woo & Jeong, Jae-Weon, 2016. "DPHX (dew point evaporative heat exchanger): System design and performance analysis," Energy, Elsevier, vol. 101(C), pages 132-145.
    5. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    6. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    7. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    8. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    9. Muhammad Aleem & Ghulam Hussain & Muhammad Sultan & Takahiko Miyazaki & Muhammad H. Mahmood & Muhammad I. Sabir & Abdul Nasir & Faizan Shabir & Zahid M. Khan, 2020. "Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(21), pages 1-23, October.
    10. Cui, X. & Chua, K.J. & Yang, W.M., 2014. "Numerical simulation of a novel energy-efficient dew-point evaporative air cooler," Applied Energy, Elsevier, vol. 136(C), pages 979-988.
    11. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler," Applied Energy, Elsevier, vol. 217(C), pages 126-142.
    12. Chen, Yi & Yang, Hongxing & Luo, Yimo, 2017. "Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation," Applied Energy, Elsevier, vol. 194(C), pages 440-453.
    13. Duan, Zhiyin & Zhao, Xudong & Li, Junming, 2017. "Design, fabrication and performance evaluation of a compact regenerative evaporative cooler: Towards low energy cooling for buildings," Energy, Elsevier, vol. 140(P1), pages 506-519.
    14. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    15. Lin, J. & Thu, K. & Bui, T.D. & Wang, R.Z. & Ng, K.C. & Kumja, M. & Chua, K.J., 2016. "Unsteady-state analysis of a counter-flow dew point evaporative cooling system," Energy, Elsevier, vol. 113(C), pages 172-185.
    16. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    17. Lin, Jie & Huang, Si-Min & Wang, Ruzhu & Jon Chua, Kian, 2019. "On the in-depth scaling and dimensional analysis of a cross-flow membrane liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 250(C), pages 786-800.
    18. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    19. Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
    20. Pandelidis, Demis & Anisimov, Sergey & Rajski, Krzysztof & Brychcy, Ewa & Sidorczyk, Marek, 2017. "Performance comparison of the advanced indirect evaporative air coolers," Energy, Elsevier, vol. 135(C), pages 138-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:95:y:2016:i:c:p:303-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.