IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v123y2017icp432-444.html
   My bibliography  Save this article

Impact of district heat source on primary energy savings of a desiccant-enhanced evaporative cooling system

Author

Listed:
  • Dong, Hye-Won
  • Lee, Sung-Joon
  • Yoon, Dong-Seob
  • Park, Joon-Young
  • Jeong, Jae-Weon

Abstract

The purpose of this research is to evaluate the primary energy savings of a desiccant-enhanced evaporative (DEVap) cooling system with a district heat source. The DEVap system consists of an internally cooled liquid desiccant dehumidifier and dew point evaporative cooler connected in series. The liquid desiccant unit requires a heat source for regenerating the weak desiccant solution, which means that the DEVap cooler is a thermally driven cooling system. It can provide energy benefits when the supplied heat comes from waste heat or renewable heat sources. In this research, district heat obtained from a combined heat and power (CHP) system was used as the heat source for the DEVap system. The primary energy consumption and CO2 emission rate of the proposed system with a district heat source were estimated using a detailed energy simulation and compared with those powered by a conventional gas boiler. The results showed that the DEVap system with district heat source consumed 46.2% less primary energy and produced 40.5% less CO2 compared with the system using the conventional gas boiler.

Suggested Citation

  • Dong, Hye-Won & Lee, Sung-Joon & Yoon, Dong-Seob & Park, Joon-Young & Jeong, Jae-Weon, 2017. "Impact of district heat source on primary energy savings of a desiccant-enhanced evaporative cooling system," Energy, Elsevier, vol. 123(C), pages 432-444.
  • Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:432-444
    DOI: 10.1016/j.energy.2017.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yan & Fu, Lin & Zhang, Shigang & Zhao, Xiling, 2011. "A new type of district heating system based on distributed absorption heat pumps," Energy, Elsevier, vol. 36(7), pages 4570-4576.
    2. Köfinger, M. & Basciotti, D. & Schmidt, R.R. & Meissner, E. & Doczekal, C. & Giovannini, A., 2016. "Low temperature district heating in Austria: Energetic, ecologic and economic comparison of four case studies," Energy, Elsevier, vol. 110(C), pages 95-104.
    3. Jradi, M. & Riffat, S., 2014. "Experimental and numerical investigation of a dew-point cooling system for thermal comfort in buildings," Applied Energy, Elsevier, vol. 132(C), pages 524-535.
    4. Kim, Min-Hwi & Dong, Hae-Won & Park, Joon-Young & Jeong, Jae-Weon, 2016. "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell," Applied Energy, Elsevier, vol. 180(C), pages 446-456.
    5. Kim, Min-Hwi & Park, Jun-Seok & Jeong, Jae-Weon, 2013. "Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system," Energy, Elsevier, vol. 59(C), pages 726-736.
    6. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2016. "Lowering district heating temperatures – Impact to system performance in current and future Danish energy scenarios," Energy, Elsevier, vol. 94(C), pages 273-291.
    7. Ham, Sang-Woo & Jeong, Jae-Weon, 2016. "DPHX (dew point evaporative heat exchanger): System design and performance analysis," Energy, Elsevier, vol. 101(C), pages 132-145.
    8. Li, Yan & Fu, Lin & Zhang, Shuyan, 2015. "Technology application of district heating system with Co-generation based on absorption heat exchange," Energy, Elsevier, vol. 90(P1), pages 663-670.
    9. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    2. Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
    3. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2020. "Energy performance investigation of net plus energy town: Energy balance of the Jincheon Eco-Friendly energy town," Renewable Energy, Elsevier, vol. 147(P1), pages 1784-1800.
    4. Yu-Jin Hwang & Jae-Weon Jeong, 2021. "Energy Saving Potential of Radiant Floor Heating Assisted by an Air Source Heat Pump in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-14, March.
    5. Dong, Hye-Won & Jeong, Jae-Weon, 2020. "Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system," Renewable Energy, Elsevier, vol. 147(P1), pages 2358-2373.
    6. Saedpanah, Ehsan & Pasdarshahri, Hadi, 2021. "Performance assessment of hybrid desiccant air conditioning systems: A dynamic approach towards achieving optimum 3E solution across the lifespan," Energy, Elsevier, vol. 234(C).
    7. Beom-Jun Kim & Junseok Park & Jae-Weon Jeong, 2019. "Indoor Air Quality Enhancement Performance of Liquid Desiccant and Evaporative Cooling-Assisted Air Conditioning Systems," Sustainability, MDPI, vol. 11(4), pages 1-16, February.
    8. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    2. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Kim, Hui-Jeong & Ham, Sang-Woo & Yoon, Dong-Seob & Jeong, Jae-Weon, 2017. "Cooling performance measurement of two cross-flow indirect evaporative coolers in general and regenerative operation modes," Applied Energy, Elsevier, vol. 195(C), pages 268-277.
    4. Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
    5. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    6. Meesenburg, Wiebke & Ommen, Torben & Thorsen, Jan Eric & Elmegaard, Brian, 2020. "Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy," Energy, Elsevier, vol. 191(C).
    7. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    8. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    9. Wang, Xiaoyin & Zhao, Xiling & Fu, Lin, 2018. "Entransy analysis of secondary network flow distribution in absorption heat exchanger," Energy, Elsevier, vol. 147(C), pages 428-439.
    10. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    11. Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems," Energy, Elsevier, vol. 193(C).
    12. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    13. Heng Chen & Jidong Xu & Yao Xiao & Zhen Qi & Gang Xu & Yongping Yang, 2018. "An Improved Heating System with Waste Pressure Utilization in a Combined Heat and Power Unit," Energies, MDPI, vol. 11(6), pages 1-20, June.
    14. Kim, Min-Hwi & Dong, Hae-Won & Park, Joon-Young & Jeong, Jae-Weon, 2016. "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell," Applied Energy, Elsevier, vol. 180(C), pages 446-456.
    15. Jinshi Wang & Weiqi Liu & Guangyao Liu & Weijia Sun & Gen Li & Binbin Qiu, 2020. "Theoretical Design and Analysis of the Waste Heat Recovery System of Turbine Exhaust Steam Using an Absorption Heat Pump for Heating Supply," Energies, MDPI, vol. 13(23), pages 1-19, November.
    16. Ziemele, Jelena & Talcis, Normunds & Osis, Ugis & Dace, Elina, 2021. "A methodology for selecting a sustainable development strategy for connecting low heat density consumers to a district heating system by cascading of heat carriers," Energy, Elsevier, vol. 230(C).
    17. Kauko, Hanne & Kvalsvik, Karoline Husevåg & Rohde, Daniel & Hafner, Armin & Nord, Natasa, 2017. "Dynamic modelling of local low-temperature heating grids: A case study for Norway," Energy, Elsevier, vol. 139(C), pages 289-297.
    18. Alsagri, Ali Sulaiman & Arabkoohsar, Ahmad & Khosravi, Milad & Alrobaian, Abdulrahman A., 2019. "Efficient and cost-effective district heating system with decentralized heat storage units, and triple-pipes," Energy, Elsevier, vol. 188(C).
    19. Ferreiro Garcia, Ramon & Carril, Jose Carbia & Iglesias Garcia, Steven, 2017. "Low-grade heat-based thermal cycles unconstrained by the Carnot factor doing work by cooling," Energy, Elsevier, vol. 122(C), pages 204-213.
    20. Xin Cui & Le Sun & Sicong Zhang & Liwen Jin, 2019. "On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates," Energies, MDPI, vol. 12(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:123:y:2017:i:c:p:432-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.