IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1784-1800.html
   My bibliography  Save this article

Energy performance investigation of net plus energy town: Energy balance of the Jincheon Eco-Friendly energy town

Author

Listed:
  • Kim, Min-Hwi
  • Kim, Deukwon
  • Heo, Jaehyeok
  • Lee, Dong-Won

Abstract

Increasing the energy supplement from renewable energy systems is one of the major issues for preparing the climate change challenges. In order to expanding the energy supplement from the renewable energy, the surplus energy should be generated in the community. This study presents the feasibility of configuration of net plus energy community by real-scale experimental research and measurements with an eco-friendly energy town constructed in Jincheon, stated in the middle of the South Korea. The 72,000 m2 of town contains six public buildings: a high school, library, youth center, childcare center, public health center, and management center, and the facilities incorporated a hybrid renewable energy system (HRES). This paper demonstrates the field tests and measurement results of annual and monthly source and site energy consumption and generation. The annual average daily final yield of the PV system installed in the town achieved 3.5 kWh/kWp/d, and the monthly performance ratio ranged from 65% to 79%. It was also found that the HRES contributed to generate over 24% more surplus energy compared with conventional heat pump system. Consequently, the annual source energy balance of the town showed that the proposed town achieved 134.5% net plus energy town in South Korea.

Suggested Citation

  • Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2020. "Energy performance investigation of net plus energy town: Energy balance of the Jincheon Eco-Friendly energy town," Renewable Energy, Elsevier, vol. 147(P1), pages 1784-1800.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1784-1800
    DOI: 10.1016/j.renene.2019.09.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931451X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    2. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    3. Delia D’Agostino & Paolo Zangheri & Luca Castellazzi, 2017. "Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings," Energies, MDPI, vol. 10(1), pages 1-15, January.
    4. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    5. Dong, Hye-Won & Lee, Sung-Joon & Yoon, Dong-Seob & Park, Joon-Young & Jeong, Jae-Weon, 2017. "Impact of district heat source on primary energy savings of a desiccant-enhanced evaporative cooling system," Energy, Elsevier, vol. 123(C), pages 432-444.
    6. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    7. Li, Cheng & Hong, Tianzhen & Yan, Da, 2014. "An insight into actual energy use and its drivers in high-performance buildings," Applied Energy, Elsevier, vol. 131(C), pages 394-410.
    8. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    9. Perera, A.T.D. & Coccolo, Silvia & Scartezzini, Jean-Louis & Mauree, Dasaraden, 2018. "Quantifying the impact of urban climate by extending the boundaries of urban energy system modeling," Applied Energy, Elsevier, vol. 222(C), pages 847-860.
    10. Bagheri, Mehdi & Shirzadi, Navid & Bazdar, Elahe & Kennedy, Christopher A., 2018. "Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 254-264.
    11. Baek, Seoin & Park, Eunil & Kim, Min-Gil & Kwon, Sang Jib & Kim, Ki Joon & Ohm, Jay Y. & del Pobil, Angel P., 2016. "Optimal renewable power generation systems for Busan metropolitan city in South Korea," Renewable Energy, Elsevier, vol. 88(C), pages 517-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
    2. Deuk-Won Kim & Min-Hwi Kim & Dong-Won Lee, 2022. "Economic and Environmental Analysis of Solar Thermal and Seasonal Thermal Energy Storage Based on a Renewable Energy Conversion System for Greenhouses," Energies, MDPI, vol. 15(18), pages 1-12, September.
    3. Viktor Bukovszki & Ábel Magyari & Marina Kristina Braun & Kitti Párdi & András Reith, 2020. "Energy Modelling as a Trigger for Energy Communities: A Joint Socio-Technical Perspective," Energies, MDPI, vol. 13(9), pages 1-44, May.
    4. Min-Hwi Kim & Deuk-Won Kim & Dong-Won Lee & Jaehyeok Heo, 2021. "Experimental Analysis of Bi-Directional Heat Trading Operation Integrated with Heat Prosumers in Thermal Networks," Energies, MDPI, vol. 14(18), pages 1-18, September.
    5. Min-Hwi Kim & Deuk-Won Kim & Dong-Won Lee, 2021. "Feasibility of Low Carbon Renewable Energy City Integrated with Hybrid Renewable Energy Systems," Energies, MDPI, vol. 14(21), pages 1-24, November.
    6. Min-Hwi Kim & Youngsub An & Hong-Jin Joo & Dong-Won Lee & Jae-Ho Yun, 2021. "Self-Sufficiency and Energy Savings of Renewable Thermal Energy Systems for an Energy-Sharing Community," Energies, MDPI, vol. 14(14), pages 1-14, July.
    7. Jihoon Jang & Joosang Lee & Eunjo Son & Kyungyong Park & Gahee Kim & Jee Hang Lee & Seung-Bok Leigh, 2019. "Development of an Improved Model to Predict Building Thermal Energy Consumption by Utilizing Feature Selection," Energies, MDPI, vol. 12(21), pages 1-20, November.
    8. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    9. Li, Qi & Xiao, Xukang & Pu, Yuchen & Luo, Shuyu & Liu, Hong & Chen, Weirong, 2023. "Hierarchical optimal scheduling method for regional integrated energy systems considering electricity-hydrogen shared energy," Applied Energy, Elsevier, vol. 349(C).
    10. Zhang, Fangfang & Fang, Mingkun & Pan, Jiale & Tao, Ran & Zhu, Di & Liu, Weichao & Xiao, Ruofu, 2023. "Guide vane profile optimization of pump-turbine for grid connection performance improvement," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
    2. Navid Shirzadi & Fuzhan Nasiri & Ursula Eicker, 2020. "Optimal Configuration and Sizing of an Integrated Renewable Energy System for Isolated and Grid-Connected Microgrids: The Case of an Urban University Campus," Energies, MDPI, vol. 13(14), pages 1-18, July.
    3. Bagheri, Mehdi & Delbari, Seyed Hamid & Pakzadmanesh, Mina & Kennedy, Christopher A., 2019. "City-integrated renewable energy design for low-carbon and climate-resilient communities," Applied Energy, Elsevier, vol. 239(C), pages 1212-1225.
    4. Song, Jeonghun & Oh, Si-Doek & Song, Seung Jin, 2019. "Effect of increased building-integrated renewable energy on building energy portfolio and energy flows in an urban district of Korea," Energy, Elsevier, vol. 189(C).
    5. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    6. Song, Jeonghun & Song, Seung Jin, 2020. "A framework for analyzing city-wide impact of building-integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    7. Wang, Wei & Hong, Tianzhen & Xu, Xiaodong & Chen, Jiayu & Liu, Ziang & Xu, Ning, 2019. "Forecasting district-scale energy dynamics through integrating building network and long short-term memory learning algorithm," Applied Energy, Elsevier, vol. 248(C), pages 217-230.
    8. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    9. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    10. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    11. Ernestyna Szpakowska-Loranc, 2021. "Multi-Attribute Analysis of Contemporary Cultural Buildings in the Historic Urban Fabric as Sustainable Spaces—Krakow Case Study," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    12. Hye Gi Kim & Sun Sook Kim, 2020. "Occupants’ Awareness of and Satisfaction with Green Building Technologies in a Certified Office Building," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    13. Wang, Zhengchao & Perera, A.T.D., 2020. "Integrated platform to design robust energy internet," Applied Energy, Elsevier, vol. 269(C).
    14. Ramallo-González, Alfonso P. & Loonen, Roel & Tomat, Valentina & Zamora, Miguel Ángel & Surugin, Dmitry & Hensen, Jan, 2020. "Nomograms for de-complexing the dimensioning of off-grid PV systems," Renewable Energy, Elsevier, vol. 161(C), pages 162-172.
    15. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2019. "Towards nearly zero-energy buildings in Mediterranean countries: Energy Performance of Buildings Directive evolution and the energy rehabilitation challenge in the Spanish residential sector," Energy, Elsevier, vol. 176(C), pages 335-352.
    16. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    17. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    18. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    19. Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2023. "Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions," Energies, MDPI, vol. 16(9), pages 1-34, April.
    20. Xiaoxia Li & Husheng Qiu & Zhifeng Wang & Jinping Li & Guobin Yuan & Xiao Guo & Lifeng Jin, 2023. "Numerical Investigation of a Solar-Heating System with Solar-Tower Receiver and Seasonal Storage in Northern China: Dynamic Performance Assessment and Operation Strategy Analysis," Energies, MDPI, vol. 16(14), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1784-1800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.