IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics0306261920302427.html
   My bibliography  Save this article

An experimental methodology to assess the climate impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas

Author

Listed:
  • Sánchez, M.N.
  • Soutullo, S.
  • Olmedo, R.
  • Bravo, D.
  • Castaño, S.
  • Jiménez, M.J.

Abstract

An experimental methodology has been developed to evaluate the climate impact assessment on the energy performance of buildings based on real weather data. This new methodology has been applied in Madrid and Tabernas, respectively characterized by temperate and cold desert climates. A systematic study has been conducted supported by a ten-year test campaign from 2008 to 2017, analysing an average year and a typical hot year. Annual and seasonal experimental values have been compared with typical meteorological years, synthetically created for Madrid (1981–2010) and Tabernas (1972–2000). Madrid registered an increase in air temperature of 0.6 °C in the average year and of 0.9 °C in the typical hot year, compared to the synthetic year. In Tabernas, the increase in air temperature was 2.4 °C and 2.7 °C respectively. Climate indices and surface maps of temperature, relative humidity and solar global radiation have confirmed the same climatic trends. To evaluate how climate change affects the building energy performance, heating and cooling degree days have been calculated. The typical hot year has the highest value of 200°days for the cooling index in summer and the average year has the highest value of about 1000°days for the heating index in winter, both registered in the temperate climate. Finally, a bioclimatic analysis concluded that in temperate climates, cooling strategies have to be enhanced in summer and early fall. On the contrary, in the desert climates it is worth noting the increase in comfort hours in spring and autumn.

Suggested Citation

  • Sánchez, M.N. & Soutullo, S. & Olmedo, R. & Bravo, D. & Castaño, S. & Jiménez, M.J., 2020. "An experimental methodology to assess the climate impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302427
    DOI: 10.1016/j.apenergy.2020.114730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920302427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xamán, J. & Vargas-López, R. & Gijón-Rivera, M. & Zavala-Guillén, I. & Jiménez, M.J. & Arce, J., 2019. "Transient thermal analysis of a solar chimney for buildings with three different types of absorbing materials: Copper plate/PCM/concrete wall," Renewable Energy, Elsevier, vol. 136(C), pages 139-158.
    2. Pan, Wei & Pan, Mi, 2019. "Opportunities and risks of implementing zero-carbon building policy for cities: Hong Kong case," Applied Energy, Elsevier, vol. 256(C).
    3. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    4. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    5. Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
    6. Athienitis, Andreas K. & Barone, Giovanni & Buonomano, Annamaria & Palombo, Adolfo, 2018. "Assessing active and passive effects of façade building integrated photovoltaics/thermal systems: Dynamic modelling and simulation," Applied Energy, Elsevier, vol. 209(C), pages 355-382.
    7. Perera, A.T.D. & Coccolo, Silvia & Scartezzini, Jean-Louis & Mauree, Dasaraden, 2018. "Quantifying the impact of urban climate by extending the boundaries of urban energy system modeling," Applied Energy, Elsevier, vol. 222(C), pages 847-860.
    8. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    9. Xue, Xue & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2014. "An interactive building power demand management strategy for facilitating smart grid optimization," Applied Energy, Elsevier, vol. 116(C), pages 297-310.
    10. Sánchez, M.N. & Giancola, E. & Suárez, M.J. & Blanco, E. & Heras, M.R., 2017. "Experimental evaluation of the airflow behaviour in horizontal and vertical Open Joint Ventilated Facades using Stereo-PIV," Renewable Energy, Elsevier, vol. 109(C), pages 613-623.
    11. S. Soutullo & E. Giancola & M. J. Jiménez & J. A. Ferrer & M. N. Sánchez, 2020. "How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid," Energies, MDPI, vol. 13(1), pages 1-21, January.
    12. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2019. "The feasibility and importance of considering climate change impacts in building retrofit analysis," Applied Energy, Elsevier, vol. 233, pages 254-270.
    13. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
    14. Virgilio Ciancio & Serena Falasca & Iacopo Golasi & Pieter de Wilde & Massimo Coppi & Livio de Santoli & Ferdinando Salata, 2019. "Resilience of a Building to Future Climate Conditions in Three European Cities," Energies, MDPI, vol. 12(23), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Nuria Sánchez & Emanuela Giancola & Silvia Soutullo & Ana Rosa Gamarra & Rafael Olmedo & José Antonio Ferrer & María José Jiménez, 2022. "Suitability Evaluation of Different Measured Variables to Assess the Occupancy Patterns of a Building: Analysis of a Classroom of a School in Madrid during the COVID-19 Pandemic," Energies, MDPI, vol. 15(9), pages 1-15, April.
    2. Yessenia Olazo-Gómez & Héctor Herrada & Sergio Castaño & Jesús Arce & Jesús P. Xamán & María José Jiménez, 2020. "Data-Based RC Dynamic Modelling to Assessing the In-Situ Thermal Performance of Buildings. Analysis of Several Key Aspects in a Simplified Reference Case toward the Application at On-Board Monitoring ," Energies, MDPI, vol. 13(18), pages 1-30, September.
    3. Silvia Soutullo & Laura Aelenei & Per Sieverts Nielsen & Jose Antonio Ferrer & Helder Gonçalves, 2020. "Testing Platforms as Drivers for Positive-Energy Living Laboratories," Energies, MDPI, vol. 13(21), pages 1-21, October.
    4. Silvia Soutullo & Emanuela Giancola & María Nuria Sánchez & José Antonio Ferrer & David García & María José Súarez & Jesús Ignacio Prieto & Elena Antuña-Yudego & Juan Luís Carús & Miguel Ángel Fernánd, 2020. "Methodology for Quantifying the Energy Saving Potentials Combining Building Retrofitting, Solar Thermal Energy and Geothermal Resources," Energies, MDPI, vol. 13(22), pages 1-25, November.
    5. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Soutullo & E. Giancola & M. J. Jiménez & J. A. Ferrer & M. N. Sánchez, 2020. "How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid," Energies, MDPI, vol. 13(1), pages 1-21, January.
    2. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    3. Bartosz Radomski & Tomasz Mróz, 2023. "Application of the Hybrid MCDM Method for Energy Modernisation of an Existing Public Building—A Case Study," Energies, MDPI, vol. 16(8), pages 1-18, April.
    4. Rosa Francesca De Masi & Valentino Festa & Antonio Gigante & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of Climate Changes on Renewable Production in the Mediterranean Climate: Case Study of the Energy Retrofit for a Detached House," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    5. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    6. Silvia Soutullo & Emanuela Giancola & María Nuria Sánchez & José Antonio Ferrer & David García & María José Súarez & Jesús Ignacio Prieto & Elena Antuña-Yudego & Juan Luís Carús & Miguel Ángel Fernánd, 2020. "Methodology for Quantifying the Energy Saving Potentials Combining Building Retrofitting, Solar Thermal Energy and Geothermal Resources," Energies, MDPI, vol. 13(22), pages 1-25, November.
    7. Kimiya Aram & Roohollah Taherkhani & Agnė Šimelytė, 2022. "Multistage Optimization toward a Nearly Net Zero Energy Building Due to Climate Change," Energies, MDPI, vol. 15(3), pages 1-21, January.
    8. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Zhang, Shicong & Wang, Ke & Xu, Wei & Iyer-Raniga, Usha & Athienitis, Andreas & Ge, Hua & Cho, Dong woo & Feng, Wei & Okumiya, Masaya & Yoon, Gyuyoung & Mazria, Edward & Lyu, Yanjie, 2021. "Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region," Energy Policy, Elsevier, vol. 159(C).
    10. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Anna Szymczak-Graczyk & Gabriela Gajewska & Ireneusz Laks & Wojciech Kostrzewski, 2022. "Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings," Energies, MDPI, vol. 15(7), pages 1-17, April.
    12. Marta Videras Rodríguez & Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2020. "Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies," Energies, MDPI, vol. 13(23), pages 1-22, November.
    13. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    14. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    15. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    16. Wang, Zhengchao & Perera, A.T.D., 2020. "Integrated platform to design robust energy internet," Applied Energy, Elsevier, vol. 269(C).
    17. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    18. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Farah, Sleiman & Liu, Ming & Saman, Wasim, 2019. "Numerical investigation of phase change material thermal storage for space cooling," Applied Energy, Elsevier, vol. 239(C), pages 526-535.
    20. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.