IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3475-d1124673.html
   My bibliography  Save this article

Application of the Hybrid MCDM Method for Energy Modernisation of an Existing Public Building—A Case Study

Author

Listed:
  • Bartosz Radomski

    (Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Science, Wojska Polskiego 28, 60-637 Poznań, Poland)

  • Tomasz Mróz

    (Faculty of Environmental Engineering and Energy Poznań, University of Technology, Berdychowo 4, 60-965 Poznań, Poland)

Abstract

The existing public utility building belonging to the Forest Experimental Station of the Poznań University of Life Sciences, due to high energy consumption and related costs, has qualified for deep energy modernisation or consideration for the construction of a new building. One of the goals is to achieve carbon neutrality and have a positive energy balance. The article uses the hybrid DEMATEL-AHP/ANP-VIKOR method. The methodology used is distinguished by the creation of a set of decision-making criteria and the identification of the relationship between them, which is determined by conducting a survey of a group of experts using the Delphi method, as well as determining the preferences of the decision-maker using a survey of the target group using social research. Two different models of the decision-maker’s preferences have been developed, taking into account the selected decision criteria, and four acceptable technical solutions have been identified. As a result of the calculations performed, a ranking of the solutions has been developed, from the most preferred to the least accepted. Variant 3B has been identified as the best solution with respect to eight evaluation criteria for both of the adopted models of the decision-maker’s preferences. The ranking index R i coefficient for this variant ranged between 0.733 and 0.901, while for the other variants, it was lower and amounted to between 0.106 and 0.274 for variant 1, 0.166 and 0.290 for variant 2 and 0.403 and 0.437 for variant 3A. The methodology used for the case study has proved to be applicable. The presented methodology can be used to design new buildings (not only residential) with almost zero energy consumption, as well as those with a positive energy balance, and can also be used for deep energy modernisation. In this article, it was applied for the first time to the energy modernisation of an existing public building.

Suggested Citation

  • Bartosz Radomski & Tomasz Mróz, 2023. "Application of the Hybrid MCDM Method for Energy Modernisation of an Existing Public Building—A Case Study," Energies, MDPI, vol. 16(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3475-:d:1124673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aleksandra Radziejowska & Bartosz Sobotka, 2021. "Analysis of the Social Aspect of Smart Cities Development for the Example of Smart Sustainable Buildings," Energies, MDPI, vol. 14(14), pages 1-14, July.
    2. Ruijun Liu & Hao Sun & Lu Zhang & Qianwei Zhuang & Lele Zhang & Xueyi Zhang & Ye Chen, 2018. "Low-Carbon Energy Planning: A Hybrid MCDM Method Combining DANP and VIKOR Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.
    3. Anna Szymczak-Graczyk & Gabriela Gajewska & Ireneusz Laks & Wojciech Kostrzewski, 2022. "Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings," Energies, MDPI, vol. 15(7), pages 1-17, April.
    4. Siyue Lu & Teng Li & Xuefeng Yan & Shaobing Yang, 2022. "Evaluation of Photovoltaic Consumption Potential of Residential Temperature-Control Load Based on ANP-Fuzzy and Research on Optimal Incentive Strategy," Energies, MDPI, vol. 15(22), pages 1-21, November.
    5. Qihui Yu & Li Tian & Xiaodong Li & Xin Tan, 2022. "Compressed Air Energy Storage Capacity Configuration and Economic Evaluation Considering the Uncertainty of Wind Energy," Energies, MDPI, vol. 15(13), pages 1-30, June.
    6. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive Performance Assessment on Various Battery Energy Storage Systems," Energies, MDPI, vol. 11(10), pages 1-26, October.
    7. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    8. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach," Energies, MDPI, vol. 14(15), pages 1-16, August.
    9. Shunkun Yu & Yuqing Song, 2022. "Organizational Performance Evaluation of Coal-Fired Power Enterprises Using a Hybrid Model," Energies, MDPI, vol. 15(9), pages 1-18, April.
    10. Luo, Chao & Ju, Yanbing & Santibanez Gonzalez, Ernesto D.R. & Dong, Peiwu & Wang, Aihua, 2020. "The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China," Energy, Elsevier, vol. 211(C).
    11. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    12. Matthias Slonski & Tobias Schrag, 2019. "Linear Optimisation of a Settlement Towards the Energy-Plus House Standard," Energies, MDPI, vol. 12(2), pages 1-12, January.
    13. Shubin Wang & Weijie Li & Hasan Dincer & Serhat Yuksel, 2019. "Recognitive Approach to the Energy Policies and Investments in Renewable Energy Resources via the Fuzzy Hybrid Models," Energies, MDPI, vol. 12(23), pages 1-17, November.
    14. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    15. Chia-Chi Sun & Shih-Chi Chang, 2021. "An Assessment Framework for Solar Cell Material Based on a Modified Fuzzy DEMATEL Approach," Energies, MDPI, vol. 14(18), pages 1-17, September.
    16. Rudimar Caricimi & Géremi Gilson Dranka & Dalmarino Setti & Paula Ferreira, 2022. "Reframing the Selection of Hydraulic Turbines Integrating Analytical Hierarchy Process (AHP) and Fuzzy VIKOR Multi-Criteria Methods," Energies, MDPI, vol. 15(19), pages 1-26, October.
    17. Cengiz Kahraman & Irem Ucal Sari & Sezi Çevik Onar, 2022. "Strategic Multi-criteria Decision-Making Against Pandemics Using Picture and Spherical Fuzzy AHP and TOPSIS," International Series in Operations Research & Management Science, in: Y. Ilker Topcu & Şule Önsel Ekici & Özgür Kabak & Emel Aktas & Özay Özaydın (ed.), New Perspectives in Operations Research and Management Science, pages 385-422, Springer.
    18. Nan Li & Haining Zhang & Xiangcheng Zhang & Xue Ma & Sen Guo, 2020. "How to Select the Optimal Electrochemical Energy Storage Planning Program? A Hybrid MCDM Method," Energies, MDPI, vol. 13(4), pages 1-20, February.
    19. Mahmood Shafiee, 2022. "Wind Energy Development Site Selection Using an Integrated Fuzzy ANP-TOPSIS Decision Model," Energies, MDPI, vol. 15(12), pages 1-20, June.
    20. Virgilio Ciancio & Serena Falasca & Iacopo Golasi & Pieter de Wilde & Massimo Coppi & Livio de Santoli & Ferdinando Salata, 2019. "Resilience of a Building to Future Climate Conditions in Three European Cities," Energies, MDPI, vol. 12(23), pages 1-15, November.
    21. Ander Zubiria & Álvaro Menéndez & Hans-Jürgen Grande & Pilar Meneses & Gregorio Fernández, 2022. "Multi-Criteria Decision-Making Problem for Energy Storage Technology Selection for Different Grid Applications," Energies, MDPI, vol. 15(20), pages 1-25, October.
    22. Andrzej Pacana & Dominika Siwiec, 2022. "Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations," Energies, MDPI, vol. 15(3), pages 1-33, February.
    23. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    24. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2023. "Audit-Based Energy Performance Analysis of Multifamily Buildings in South-East Poland," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Szymczak-Graczyk & Gabriela Gajewska & Ireneusz Laks & Wojciech Kostrzewski, 2022. "Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    3. Sánchez, M.N. & Soutullo, S. & Olmedo, R. & Bravo, D. & Castaño, S. & Jiménez, M.J., 2020. "An experimental methodology to assess the climate impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas," Applied Energy, Elsevier, vol. 264(C).
    4. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach," Energies, MDPI, vol. 14(15), pages 1-16, August.
    5. Łukasz Amanowicz, 2021. "Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe," Energies, MDPI, vol. 14(23), pages 1-15, December.
    6. Kimiya Aram & Roohollah Taherkhani & Agnė Šimelytė, 2022. "Multistage Optimization toward a Nearly Net Zero Energy Building Due to Climate Change," Energies, MDPI, vol. 15(3), pages 1-21, January.
    7. Yudong Tan & Guosheng Xie & Yunhao Xiao & Yi Luo & Xintao Xie & Ming Wen, 2022. "Comprehensive Benefit Evaluation of Hybrid Pumped-Storage Power Stations Based on Improved Rank Correlation-Entropy Weight Method," Energies, MDPI, vol. 15(22), pages 1-17, November.
    8. Fanrong Ji & Zhaoyuan Luo & Xiancun Hu & Yunquan Nan & Aifang Wei, 2023. "A DPSIR Framework to Evaluate and Predict the Development of Prefabricated Buildings: A Case Study," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    9. Alicja Lenarczyk & Marcin Jaskólski & Paweł Bućko, 2022. "The Application of a Multi-Criteria Decision-Making for Indication of Directions of the Development of Renewable Energy Sources in the Context of Energy Policy," Energies, MDPI, vol. 15(24), pages 1-21, December.
    10. Xiaoyang Shu & Raman Kumar & Rajeev Kumar Saha & Nikhil Dev & Željko Stević & Shubham Sharma & Mohammad Rafighi, 2023. "Sustainability Assessment of Energy Storage Technologies Based on Commercialization Viability: MCDM Model," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    11. Marta Videras Rodríguez & Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2020. "Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies," Energies, MDPI, vol. 13(23), pages 1-22, November.
    12. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    13. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    14. Yongli Wang & Xiangyi Zhou & Hao Liu & Xichang Chen & Zixin Yan & Dexin Li & Chang Liu & Jiarui Wang, 2023. "Evaluation of the Maturity of Urban Energy Internet Development Based on AHP-Entropy Weight Method and Improved TOPSIS," Energies, MDPI, vol. 16(13), pages 1-18, July.
    15. Małgorzata Łatuszyńska & Kesra Nermend, 2022. "Energy Decision Making: Problems, Methods, and Tools—An Overview," Energies, MDPI, vol. 15(15), pages 1-5, July.
    16. Peng Hao & Jun-Peng Guo & Eoghan O’Neill & Yong-Heng Shi, 2023. "When Will First-Price Work Well? The Impact of Anti-Corruption Rules on Photovoltaic Power Generation Procurement Auctions," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    17. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    18. Yujing Guo & Qian Zhang & Kin Keung Lai & Yingqin Zhang & Shubin Wang & Wanli Zhang, 2020. "The Impact of Urban Transportation Infrastructure on Air Quality," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    19. Kharseh, Mohamad & Altorkmany, Lobna & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Analysis of the effect of global climate change on ground source heat pump systems in different climate categories," Renewable Energy, Elsevier, vol. 78(C), pages 219-225.
    20. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3475-:d:1124673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.