IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8047-d693033.html
   My bibliography  Save this article

Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe

Author

Listed:
  • Łukasz Amanowicz

    (Institute of Environmental Engineering and Building Installations, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznan, Poland)

Abstract

Due to the energy transformation in buildings, the proportions of energy consumption for heating, ventilation and domestic hot water preparation (DHW) have changed. The latter component can now play a significant role, not only in the context of the annual heat demand, but also in the context of selecting the peak power of the heat source. In this paper, the comparison of chosen methods for its calculation is presented. The results show that for contemporary residential buildings, the peak power for DHW preparation can achieve the same or higher value as the peak power for heating and ventilation. For this reason, nowadays the correct selection of the peak power of a heat source for DHW purposes becomes more important, especially if it uses renewable energy sources, because it affects its size and so the investment cost and economic efficiency. It is also indicated that in modern buildings, mainly accumulative systems with hot water storage tanks should be taken into account because they are less sensitive to design errors (wrongly selected peak value in the context of the uncertainty of hot water consumption) and because they result in acceptable value of peak power for DHW in comparison to heating and ventilation.

Suggested Citation

  • Łukasz Amanowicz, 2021. "Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe," Energies, MDPI, vol. 14(23), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8047-:d:693033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dudkiewicz, Edyta & Fidorów-Kaprawy, Natalia, 2017. "The energy analysis of a hybrid hot tap water preparation system based on renewable and waste sources," Energy, Elsevier, vol. 127(C), pages 198-208.
    2. Agnieszka Jachura & Robert Sekret, 2021. "Life Cycle Assessment of the Use of Phase Change Material in an Evacuated Solar Tube Collector," Energies, MDPI, vol. 14(14), pages 1-18, July.
    3. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    4. Sabina Kordana-Obuch & Mariusz Starzec & Daniel Słyś, 2021. "Assessment of the Feasibility of Implementing Shower Heat Exchangers in Residential Buildings Based on Users’ Energy Saving Preferences," Energies, MDPI, vol. 14(17), pages 1-30, September.
    5. Łukasz Amanowicz, 2020. "Controlling the Thermal Power of a Wall Heating Panel with Heat Pipes by Changing the Mass Flowrate and Temperature of Supplying Water—Experimental Investigations," Energies, MDPI, vol. 13(24), pages 1-18, December.
    6. Huang, Tao & Yang, Xiaochen & Svendsen, Svend, 2020. "Multi-mode control method for the existing domestic hot water storage tanks with district heating supply," Energy, Elsevier, vol. 191(C).
    7. Maltais, Louis-Gabriel & Gosselin, Louis, 2021. "Predictability analysis of domestic hot water consumption with neural networks: From single units to large residential buildings," Energy, Elsevier, vol. 229(C).
    8. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    9. Jia, Jie & Lee, W.L. & Cheng, Yuanda & Tian, Qi, 2021. "Can reversible room air-conditioner be used for combined space and domestic hot water heating in subtropical dwellings? Techno-economic evidence from Hong Kong," Energy, Elsevier, vol. 223(C).
    10. Katarzyna Ratajczak & Katarzyna Michalak & Michał Narojczyk & Łukasz Amanowicz, 2021. "Real Domestic Hot Water Consumption in Residential Buildings and Its Impact on Buildings’ Energy Performance—Case Study in Poland," Energies, MDPI, vol. 14(16), pages 1-22, August.
    11. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    12. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach," Energies, MDPI, vol. 14(15), pages 1-16, August.
    13. Wei, Haibin & Yang, Dong & Du, Jinhui & Guo, Xin, 2021. "Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region," Renewable Energy, Elsevier, vol. 167(C), pages 530-541.
    14. Lee, Jae Yong & Yim, Taesu, 2021. "Energy and flow demand analysis of domestic hot water in an apartment complex using a smart meter," Energy, Elsevier, vol. 229(C).
    15. Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
    16. Amanowicz, Łukasz, 2018. "Influence of geometrical parameters on the flow characteristics of multi-pipe earth-to-air heat exchangers – experimental and CFD investigations," Applied Energy, Elsevier, vol. 226(C), pages 849-861.
    17. Erdemir, Dogan & Atesoglu, Hakan & Altuntop, Necdet, 2019. "Experimental investigation on enhancement of thermal performance with obstacle placing in the horizontal hot water tank used in solar domestic hot water system," Renewable Energy, Elsevier, vol. 138(C), pages 187-197.
    18. Pomianowski, M.Z. & Johra, H. & Marszal-Pomianowska, A. & Zhang, C., 2020. "Sustainable and energy-efficient domestic hot water systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    19. Kim, Dongwoo & Yim, Taesu & Lee, Jae Yong, 2021. "Analytical study on changes in domestic hot water use caused by COVID-19 pandemic," Energy, Elsevier, vol. 231(C).
    20. Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
    21. Sanguinetti, Angela & Outcault, Sarah & Alston-Stepnitz, Eli & Moezzi, Mithra & Ingle, Aaron, 2021. "Residential solar water heating: California adopters and their experiences," Renewable Energy, Elsevier, vol. 170(C), pages 1081-1095.
    22. Braas, Hagen & Jordan, Ulrike & Best, Isabelle & Orozaliev, Janybek & Vajen, Klaus, 2020. "District heating load profiles for domestic hot water preparation with realistic simultaneity using DHWcalc and TRNSYS," Energy, Elsevier, vol. 201(C).
    23. Anna Marszal-Pomianowska & Rasmus Lund Jensen & Michal Pomianowski & Olena Kalyanova Larsen & Jacob Scharling Jørgensen & Sofie Sand Knudsen, 2021. "Comfort of Domestic Water in Residential Buildings: Flow, Temperature and Energy in Draw-Off Points: Field Study in Two Danish Detached Houses," Energies, MDPI, vol. 14(11), pages 1-20, June.
    24. Sanguinetti, Angela & Outcault, Sarah & Alston-Stepnitz, Eli & Moezzi, Mithra & Ingle, Aaron, 2021. "Residential solar water heating: California adopters and their experiences," Institute of Transportation Studies, Working Paper Series qt4rw591ft, Institute of Transportation Studies, UC Davis.
    25. Zhengjie You & Michel Zade & Babu Kumaran Nalini & Peter Tzscheutschler, 2021. "Flexibility Estimation of Residential Heat Pumps under Heat Demand Uncertainty," Energies, MDPI, vol. 14(18), pages 1-19, September.
    26. Chandra, Yogender Pal & Matuska, Tomas, 2020. "Numerical prediction of the stratification performance in domestic hot water storage tanks," Renewable Energy, Elsevier, vol. 154(C), pages 1165-1179.
    27. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Vanhoudt, Dirk & Svendsen, Svend, 2021. "Low return temperature from domestic hot-water system based on instantaneous heat exchanger with chemical-based disinfection solution," Energy, Elsevier, vol. 215(PB).
    28. Abdelsalam, M.Y. & Teamah, H.M. & Lightstone, M.F. & Cotton, J.S., 2020. "Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems," Renewable Energy, Elsevier, vol. 147(P1), pages 77-88.
    29. Miroslaw Zukowski & Walery Jezierski, 2021. "New Deterministic Mathematical Model for Estimating the Useful Energy Output of a Medium-Sized Solar Domestic Hot Water System," Energies, MDPI, vol. 14(10), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Rajski & Jan Danielewicz, 2023. "Heat Transfer and Heat Recovery Systems," Energies, MDPI, vol. 16(7), pages 1-6, April.
    2. Sabina Kordana-Obuch & Mariusz Starzec, 2022. "Horizontal Shower Heat Exchanger as an Effective Domestic Hot Water Heating Alternative," Energies, MDPI, vol. 15(13), pages 1-22, July.
    3. Sabina Kordana-Obuch & Mariusz Starzec, 2023. "Experimental Development of the Horizontal Drain Water Heat Recovery Unit," Energies, MDPI, vol. 16(12), pages 1-24, June.
    4. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    5. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    2. Tahiri, Abdelkarim & Smith, Kevin Michael & Thorsen, Jan Eric & Hviid, Christian Anker & Svendsen, Svend, 2023. "Staged control of domestic hot water storage tanks to support district heating efficiency," Energy, Elsevier, vol. 263(PB).
    3. Beata Piotrowska & Daniel Słyś, 2022. "Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water," Energies, MDPI, vol. 16(1), pages 1-20, December.
    4. Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
    5. Beata Piotrowska & Daniel Słyś, 2023. "Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-in-Tube” Heat Exchanger: Case Study of Poland," Resources, MDPI, vol. 12(9), pages 1-17, August.
    6. Michael J. Ritchie & Jacobus A.A. Engelbrecht & Marthinus J. Booysen, 2021. "Practically-Achievable Energy Savings with the Optimal Control of Stratified Water Heaters with Predicted Usage," Energies, MDPI, vol. 14(7), pages 1-23, April.
    7. Maltais, Louis-Gabriel & Gosselin, Louis, 2021. "Predictability analysis of domestic hot water consumption with neural networks: From single units to large residential buildings," Energy, Elsevier, vol. 229(C).
    8. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    9. Toffanin, Riccardo & Curti, Vinicio & Barbato, Maurizio C., 2021. "Impact of Legionella regulation on a 4th generation district heating substation energy use and cost: the case of a Swiss single-family household," Energy, Elsevier, vol. 228(C).
    10. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    11. Theofanis Benakopoulos & William Vergo & Michele Tunzi & Robbe Salenbien & Svend Svendsen, 2021. "Overview of Solutions for the Low-Temperature Operation of Domestic Hot-Water Systems with a Circulation Loop," Energies, MDPI, vol. 14(11), pages 1-25, June.
    12. Anna Szymczak-Graczyk & Gabriela Gajewska & Ireneusz Laks & Wojciech Kostrzewski, 2022. "Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings," Energies, MDPI, vol. 15(7), pages 1-17, April.
    13. Fanrong Ji & Zhaoyuan Luo & Xiancun Hu & Yunquan Nan & Aifang Wei, 2023. "A DPSIR Framework to Evaluate and Predict the Development of Prefabricated Buildings: A Case Study," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    14. María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
    15. Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
    16. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    17. Wojciech Rzeźnik & Ilona Rzeźnik & Paweł Hara, 2022. "Comparison of Real and Forecasted Domestic Hot Water Consumption and Demand for Heat Power in Multifamily Buildings, in Poland," Energies, MDPI, vol. 15(19), pages 1-17, September.
    18. Jin, Xin & Zhang, Huihui & Huang, Gongsheng & Lai, Alvin CK., 2021. "Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 180(C), pages 637-657.
    19. Tsvetkov, Nikolay Aleksandrovich & Krivoshein, Ujriy Olegovich & Tolstykh, Aleksandr Vital’yevich & Khutornoi, Andrey Nikolaevich & Boldyryev, Stanislav, 2020. "The calculation of solar energy used by hot water systems in permafrost region: An experimental case study for Yakutia," Energy, Elsevier, vol. 210(C).
    20. Lamrani, Bilal & Kuznik, Frédéric & Draoui, Abdeslam, 2020. "Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings," Renewable Energy, Elsevier, vol. 162(C), pages 411-426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8047-:d:693033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.