IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp530-541.html
   My bibliography  Save this article

Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region

Author

Listed:
  • Wei, Haibin
  • Yang, Dong
  • Du, Jinhui
  • Guo, Xin

Abstract

An earth-to-air heat exchanger (EAHE) is a shallow geothermal energy utilization technology, which can significantly reduce the building energy consumption. This study aims to investigate the effects of an EAHE on the indoor thermal environment in hot-summer and cold-winter regions. A full-scale experiment was conducted for a continuous 24 h period using two identical buildings (with and without an EAHE) exposed to the same outdoor conditions on typical summer and winter days. Experimental results show that the EAHE provides an average outdoor air temperature reduction of 9.12 °C under cooling conditions and increase of 5.53 °C under heating conditions. Moreover, the average outdoor air relative humidity increases by 46.89% and decreases by 27.41% in the cooling and heating conditions, respectively; the corresponding average EAHE coefficients of performance (COP) are 7.03 and 4.26, respectively. Compared to that of the building without EAHE, the average indoor air temperature of the building with EAHE decreases by 5.9 °C in summer and increases by 4.29 °C in winter, and the average walls’ internal surface temperature decreases by approximately 6 °C and increases by approximately 5.8 °C. Moreover, the EAHE system reduces the average building cooling and heating loads by 55.4 and 40.43 W/m2, respectively.

Suggested Citation

  • Wei, Haibin & Yang, Dong & Du, Jinhui & Guo, Xin, 2021. "Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region," Renewable Energy, Elsevier, vol. 167(C), pages 530-541.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:530-541
    DOI: 10.1016/j.renene.2020.11.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Jian & Nowamooz, Hossein & Braymand, Sandrine & Wolff, Patrice & Fond, Christophe, 2020. "Impact of soil moisture on the long-term energy performance of an earth-air heat exchanger system," Renewable Energy, Elsevier, vol. 147(P2), pages 2676-2687.
    2. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    3. Ascione, Fabrizio & D'Agostino, Diana & Marino, Concetta & Minichiello, Francesco, 2016. "Earth-to-air heat exchanger for NZEB in Mediterranean climate," Renewable Energy, Elsevier, vol. 99(C), pages 553-563.
    4. Amanowicz, Łukasz & Wojtkowiak, Janusz, 2020. "Approximated flow characteristics of multi-pipe earth-to-air heat exchangers for thermal analysis under variable airflow conditions," Renewable Energy, Elsevier, vol. 158(C), pages 585-597.
    5. Amanowicz, Łukasz, 2018. "Influence of geometrical parameters on the flow characteristics of multi-pipe earth-to-air heat exchangers – experimental and CFD investigations," Applied Energy, Elsevier, vol. 226(C), pages 849-861.
    6. Wei, Haibin & Yang, Dong & Guo, Yuanhao & Chen, Mengqian, 2018. "Coupling of earth-to-air heat exchangers and buoyancy for energy-efficient ventilation of buildings considering dynamic thermal behavior and cooling/heating capacity," Energy, Elsevier, vol. 147(C), pages 587-602.
    7. Yusof, T.M. & Ibrahim, H. & Azmi, W.H. & Rejab, M.R.M., 2018. "The thermal characteristics and performance of a ground heat exchanger for tropical climates," Renewable Energy, Elsevier, vol. 121(C), pages 528-538.
    8. Hsu, Chien-Yeh & Huang, Po-Chun & Liang, Jyun-De & Chiang, Yuan-Ching & Chen, Sih-Li, 2020. "The in-situ experiment of earth-air heat exchanger for a cafeteria building in subtropical monsoon climate," Renewable Energy, Elsevier, vol. 157(C), pages 741-753.
    9. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    10. Liu, Zhengxuan & Yu, Zhun (Jerry) & Yang, Tingting & Roccamena, Letizia & Sun, Pengcheng & Li, Shuisheng & Zhang, Guoqiang & El Mankibi, Mohamed, 2019. "Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system," Energy, Elsevier, vol. 172(C), pages 220-231.
    11. Wei, Haibin & Yang, Dong & Wang, Jilibo & Du, Jinhui, 2020. "Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate," Applied Energy, Elsevier, vol. 276(C).
    12. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    13. Tittelein, Pierre & Achard, Gilbert & Wurtz, Etienne, 2009. "Modelling earth-to-air heat exchanger behaviour with the convolutive response factors method," Applied Energy, Elsevier, vol. 86(9), pages 1683-1691, September.
    14. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    15. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    16. Brum, Ruth S. & Ramalho, Jairo V.A. & Rodrigues, Michel K. & Rocha, Luiz A.O. & Isoldi, Liércio A. & Dos Santos, Elizaldo D., 2019. "Design evaluation of Earth-Air Heat Exchangers with multiple ducts," Renewable Energy, Elsevier, vol. 135(C), pages 1371-1385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Pakari & Saud Ghani, 2021. "Energy Savings Resulting from Using a Near-Surface Earth-to-Air Heat Exchanger for Precooling in Hot Desert Climates," Energies, MDPI, vol. 14(23), pages 1-14, December.
    2. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    3. Łukasz Amanowicz, 2021. "Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe," Energies, MDPI, vol. 14(23), pages 1-15, December.
    4. Anshu, Kumari & Kumar, Prashant & Pradhan, Basudev, 2023. "Numerical simulation of stand-alone photovoltaic integrated with earth to air heat exchanger for space heating/cooling of a residential building," Renewable Energy, Elsevier, vol. 203(C), pages 763-778.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong Zhang & Jinbo Wang & Liao Li & Feifei Wang & Wenjie Gang, 2020. "Utilization of Earth-to-Air Heat Exchanger to Pre-Cool/Heat Ventilation Air and Its Annual Energy Performance Evaluation: A Case Study," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    2. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    5. Wei, Haibin & Yang, Dong & Wang, Jilibo & Du, Jinhui, 2020. "Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate," Applied Energy, Elsevier, vol. 276(C).
    6. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    7. Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
    8. Lebbihiat, Nacer & Atia, Abdelmalek & Arıcı, Müslüm & Meneceur, Noureddine & Hadjadj, Abdessamia & Chetioui, Youcef, 2022. "Thermal performance analysis of helical ground-air heat exchanger under hot climate: In situ measurement and numerical simulation," Energy, Elsevier, vol. 254(PC).
    9. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    10. Kwang-Seob Lee & Eun-Chul Kang & Yu-Jin Kim & Euy-Joon Lee, 2019. "Model Verification and Justification Study of Spirally Corrugated Pipes in a Ground-Air Heat Exchanger Application," Energies, MDPI, vol. 12(21), pages 1-13, October.
    11. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    12. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    13. Mirzazade Akbarpoor, Ali & Haghighi Poshtiri, Amin & Biglari, Faraz, 2021. "Performance analysis of domed roof integrated with earth-to-air heat exchanger system to meet thermal comfort conditions in buildings," Renewable Energy, Elsevier, vol. 168(C), pages 1265-1293.
    14. Elombo Motoula, Smaël Magloire & Gomat, Landry Jean Pierre & Lin, Jian & M’passi Mabiala, Bernard, 2022. "Continuum approach to evaluate humidity transportation by an Earth to Air Energy Exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Hsu, Chien-Yeh & Huang, Po-Chun & Liang, Jyun-De & Chiang, Yuan-Ching & Chen, Sih-Li, 2020. "The in-situ experiment of earth-air heat exchanger for a cafeteria building in subtropical monsoon climate," Renewable Energy, Elsevier, vol. 157(C), pages 741-753.
    16. Bai, Yufu & Long, Tianhe & Li, Wuyan & Li, Yongcai & Liu, Shuli & Wang, Zhihao & Lu, Jun & Huang, Sheng, 2022. "Experimental investigation of natural ventilation characteristics of a solar chimney coupled with earth-air heat exchanger (SCEAHE) system in summer and winter," Renewable Energy, Elsevier, vol. 193(C), pages 1001-1018.
    17. Adriana Greco & Claudia Masselli, 2020. "The Optimization of the Thermal Performances of an Earth to Air Heat Exchanger for an Air Conditioning System: A Numerical Study," Energies, MDPI, vol. 13(23), pages 1-25, December.
    18. Ascione, Fabrizio & Borrelli, Martina & De Masi, Rosa Francesca & Vanoli, Giuseppe Peter, 2020. "Hourly operational assessment of HVAC systems in Mediterranean Nearly Zero-Energy Buildings: Experimental evaluation of the potential of ground cooling of ventilation air," Renewable Energy, Elsevier, vol. 155(C), pages 950-968.
    19. Di Qi & Chuangyao Zhao & Shixiong Li & Ran Chen & Angui Li, 2021. "Numerical Assessment of Earth to Air Heat Exchanger with Variable Humidity Conditions in Greenhouses," Energies, MDPI, vol. 14(5), pages 1-18, March.
    20. Rodrigues, Michel Kepes & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2022. "A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation," Renewable Energy, Elsevier, vol. 191(C), pages 535-556.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:530-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.