IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v155y2022ics1364032121011862.html
   My bibliography  Save this article

Applications of earth-to-air heat exchangers: A holistic review

Author

Listed:
  • Mihalakakou, Giouli
  • Souliotis, Manolis
  • Papadaki, Maria
  • Halkos, George
  • Paravantis, John
  • Makridis, Sofoklis
  • Papaefthimiou, Spiros

Abstract

The building sector is responsible for 40% of primary energy consumption, with heating/cooling covering the most significant portion. Thus, passive heating/cooling applications have gained significant ground during the last three decades, with many research activities on the subject. Among passive cooling/heating applications, ground cooling (especially earth-to-air heat exchangers) has been highlighted as a remarkably attractive technological research subjects because of its significant contribution to the reduction of heating/cooling energy loads; the improvement of indoor thermal comfort conditions; and the amelioration of the urban environment. This paper presents a holistic review of state-of-the-art research, methodologies, and technologies of earth-to-air heat exchangers that help achieve energy conservation and thermal comfort in the built environment. The review covers the critical subject of the thermal performance of earth-to-air heat exchanger systems; experimental studies and applications; parametric studies for investigating the impact of their main characteristics on thermal efficiency; and recent advances and trends including hybrid technologies and systems. The models describing the thermal performance of earth-to-air heat exchangers systems were classified in numerical, analytical, and data-driven; their main theoretical principles were presented; and experimental validation was mentioned when carried out. System parameters were grouped into three categories: system design, soil types, and soil surface coverage. System design parameters, especially length and burial depth, bore the most important influence on the thermal efficiency of the system. The paper was rounded up with an economic assessment of system application, and the conclusions highlighted the need for more experimental work including laboratory simulators.

Suggested Citation

  • Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011862
    DOI: 10.1016/j.rser.2021.111921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121011862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sodha, M. S. & Bansal, N. K. & Seth, A. K., 1981. "Variance of the ground temperature distribution," Applied Energy, Elsevier, vol. 8(4), pages 245-254, August.
    2. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    3. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    4. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    5. Santamouris, M. & Mihalakakou, G. & Balaras, C.A. & Lewis, J.O. & Vallindras, M. & Argiriou, A., 1996. "Energy conservation in greenhouses with buried pipes," Energy, Elsevier, vol. 21(5), pages 353-360.
    6. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    7. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    8. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    9. Bojić, M & Papadakis, G & Kyritsis, S, 1999. "Energy from a two-pipe, earth-to-air heat exchanger," Energy, Elsevier, vol. 24(6), pages 519-523.
    10. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    11. Mihalakakou, G. & Santamouris, M. & Asimakopoulos, D. & Papanikolaou, N., 1994. "Impact of ground cover on the efficiencies of earth-to-air heat exchangers," Applied Energy, Elsevier, vol. 48(1), pages 19-32.
    12. Li, Haorong & Yu, Yuebin & Niu, Fuxin & Shafik, Michel & Chen, Bing, 2014. "Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 62(C), pages 468-477.
    13. Maerefat, M. & Haghighi, A.P., 2010. "Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 35(10), pages 2316-2324.
    14. Bansal, Vikas & Misra, Rohit & Agarwal, Ghanshyam Das & Mathur, Jyotirmay, 2013. "Transient effect of soil thermal conductivity and duration of operation on performance of Earth Air Tunnel Heat Exchanger," Applied Energy, Elsevier, vol. 103(C), pages 1-11.
    15. Mihalakakou, G. & Lewis, J.O. & Santamouris, M., 1996. "The influence of different ground covers on the heating potential of earth-to-air heat exchangers," Renewable Energy, Elsevier, vol. 7(1), pages 33-46.
    16. Mihalakakou, G. & Santamouris, M. & Asimakopoulos, D., 1994. "Use of the ground for heat dissipation," Energy, Elsevier, vol. 19(1), pages 17-25.
    17. Nemati, Nasibeh & Omidvar, Amir & Rosti, Behnam, 2021. "Performance evaluation of a novel hybrid cooling system combining indirect evaporative cooler and earth-air heat exchanger," Energy, Elsevier, vol. 215(PB).
    18. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    19. Yu, Yuebin & Li, Haorong & Niu, Fuxin & Yu, Daihong, 2014. "Investigation of a coupled geothermal cooling system with earth tube and solar chimney," Applied Energy, Elsevier, vol. 114(C), pages 209-217.
    20. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Public awareness and willingness to adopt ground source heat pumps for domestic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 49-57.
    21. Peretti, Clara & Zarrella, Angelo & De Carli, Michele & Zecchin, Roberto, 2013. "The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 107-116.
    22. Gan, Guohui, 2015. "Simulation of dynamic interactions of the earth–air heat exchanger with soil and atmosphere for preheating of ventilation air," Applied Energy, Elsevier, vol. 158(C), pages 118-132.
    23. Misra, Rohit & Bansal, Vikas & Agrawal, Ghanshyam Das & Mathur, Jyotirmay & Aseri, Tarun K., 2013. "CFD analysis based parametric study of derating factor for Earth Air Tunnel Heat Exchanger," Applied Energy, Elsevier, vol. 103(C), pages 266-277.
    24. Kumar, Rakesh & Kaushik, S.C. & Garg, S.N., 2006. "Heating and cooling potential of an earth-to-air heat exchanger using artificial neural network," Renewable Energy, Elsevier, vol. 31(8), pages 1139-1155.
    25. Ascione, Fabrizio & Bellia, Laura & Minichiello, Francesco, 2011. "Earth-to-air heat exchangers for Italian climates," Renewable Energy, Elsevier, vol. 36(8), pages 2177-2188.
    26. Chiesa, Giacomo & Simonetti, Marco & Grosso, Mario, 2014. "A 3-field earth-heat-exchange system for a school building in Imola, Italy: Monitoring results," Renewable Energy, Elsevier, vol. 62(C), pages 563-570.
    27. Trombe, A. & Pettit, M. & Bourret, B., 1991. "Air cooling by earth tube heat exchanger: Experimental approach," Renewable Energy, Elsevier, vol. 1(5), pages 699-707.
    28. Tiwari, G.N. & Akhtar, M.A. & Shukla, Ashish & Emran Khan, M., 2006. "Annual thermal performance of greenhouse with an earth–air heat exchanger: An experimental validation," Renewable Energy, Elsevier, vol. 31(15), pages 2432-2446.
    29. Liu, Zhengxuan & Yu, Zhun (Jerry) & Yang, Tingting & Roccamena, Letizia & Sun, Pengcheng & Li, Shuisheng & Zhang, Guoqiang & El Mankibi, Mohamed, 2019. "Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system," Energy, Elsevier, vol. 172(C), pages 220-231.
    30. Bojic, M. & Trifunovic, N. & Papadakis, G. & Kyritsis, S., 1997. "Numerical simulation, technical and economic evaluation of air-to-earth heat exchanger coupled to a building," Energy, Elsevier, vol. 22(12), pages 1151-1158.
    31. Wei, Haibin & Yang, Dong & Wang, Jilibo & Du, Jinhui, 2020. "Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate," Applied Energy, Elsevier, vol. 276(C).
    32. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    33. Bisoniya, Trilok Singh & Kumar, Anil & Baredar, Prashant, 2013. "Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 238-246.
    34. Mathur, Anuj & Surana, Ankit Kumar & Mathur, Sanjay, 2016. "Numerical investigation of the performance and soil temperature recovery of an EATHE system under intermittent operations," Renewable Energy, Elsevier, vol. 95(C), pages 510-521.
    35. Chalhoub, Maha & Bernier, Michel & Coquet, Yves & Philippe, Mikael, 2017. "A simple heat and moisture transfer model to predict ground temperature for shallow ground heat exchangers," Renewable Energy, Elsevier, vol. 103(C), pages 295-307.
    36. Wang, Huajun & Qi, Chengying & Wang, Enyu & Zhao, Jun, 2009. "A case study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings," Renewable Energy, Elsevier, vol. 34(1), pages 307-314.
    37. Tittelein, Pierre & Achard, Gilbert & Wurtz, Etienne, 2009. "Modelling earth-to-air heat exchanger behaviour with the convolutive response factors method," Applied Energy, Elsevier, vol. 86(9), pages 1683-1691, September.
    38. Mihalakakou, G, 2003. "On the heating potential of a single buried pipe using deterministic and intelligent techniques," Renewable Energy, Elsevier, vol. 28(6), pages 917-927.
    39. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    40. Ozgener, Leyla & Ozgener, Onder, 2010. "An experimental study of the exergetic performance of an underground air tunnel system for greenhouse cooling," Renewable Energy, Elsevier, vol. 35(12), pages 2804-2811.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elombo Motoula, Smaël Magloire & Gomat, Landry Jean Pierre & Lin, Jian & M’passi Mabiala, Bernard, 2022. "Continuum approach to evaluate humidity transportation by an Earth to Air Energy Exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    2. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    3. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    4. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    5. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    6. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).
    7. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    8. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    9. Benhammou, Mohammed & Draoui, Belkacem, 2015. "Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 348-355.
    10. Peretti, Clara & Zarrella, Angelo & De Carli, Michele & Zecchin, Roberto, 2013. "The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 107-116.
    11. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    12. Bisoniya, Trilok Singh & Kumar, Anil & Baredar, Prashant, 2013. "Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 238-246.
    13. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    14. Yıldız, Ahmet & Ozgener, Onder & Ozgener, Leyla, 2012. "Energetic performance analysis of a solar photovoltaic cell (PV) assisted closed loop earth-to-air heat exchanger for solar greenhouse cooling: An experimental study for low energy architecture in Aeg," Renewable Energy, Elsevier, vol. 44(C), pages 281-287.
    15. Adriana Greco & Claudia Masselli, 2020. "The Optimization of the Thermal Performances of an Earth to Air Heat Exchanger for an Air Conditioning System: A Numerical Study," Energies, MDPI, vol. 13(23), pages 1-25, December.
    16. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    17. Gomat, Landry Jean Pierre & Elombo Motoula, Smaël Magloire & M’Passi-Mabiala, Bernard, 2020. "An analytical method to evaluate the impact of vertical part of an earth-air heat exchanger on the whole system," Renewable Energy, Elsevier, vol. 162(C), pages 1005-1016.
    18. Rodrigues, Michel Kepes & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2022. "A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation," Renewable Energy, Elsevier, vol. 191(C), pages 535-556.
    19. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    20. Lekhal, Mohammed Cherif & Benzaama, Mohammed-Hichem & Kindinis, Andrea & Mokhtari, Abderahmane-Mejedoub & Belarbi, Rafik, 2021. "Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers," Renewable Energy, Elsevier, vol. 163(C), pages 22-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.