IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1853-d1067121.html
   My bibliography  Save this article

Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review

Author

Listed:
  • Łukasz Amanowicz

    (Institute of Environmental Engineering and Building Installations, Poznan University of Technology, ul. Berdychowo 4, 61-131 Poznan, Poland)

  • Katarzyna Ratajczak

    (Institute of Environmental Engineering and Building Installations, Poznan University of Technology, ul. Berdychowo 4, 61-131 Poznan, Poland)

  • Edyta Dudkiewicz

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland)

Abstract

The need for healthy indoor conditions, the energy crisis, and environmental concerns make building ventilation systems very important today. The elements of ventilation systems to reduce energy intensity are constantly the subject of much scientific research. The most recent articles published in the last three years are analyzed in this paper. Publications focused on the topic of reducing energy consumption in ventilation systems were selected and divided into five key research areas: (1) the aspect of the airtightness of buildings and its importance for the energy consumption, (2) the methods and effects of implementing the concept of demand-controlled ventilation in buildings with different functions, (3) the possibilities of the technical application of decentralized ventilation systems, (4) the use of earth-to-air heat exchangers, (5) the efficiency of exchangers in exhaust air heat-recovery systems. The multitude of innovative technologies and rapid technological advances are reflected in articles that appear constantly and prompt a constant updating of knowledge. This review constitutes a relevant contribution to recognizing current advancements in ventilation systems and may be helpful to many scientists in the field.

Suggested Citation

  • Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1853-:d:1067121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1853/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1853/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Xiangkui & Xiao, Yimin & Gao, Penghui, 2022. "Thermal potential improvement of an earth-air heat exchanger (EAHE) by employing backfilling for deep underground emergency ventilation," Energy, Elsevier, vol. 250(C).
    2. Jue Guo & Chong Zhang, 2022. "Utilization of Window System as Exhaust Air Heat Recovery Device and Its Energy Performance Evaluation: A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-18, April.
    3. Piotr Michalak, 2021. "Annual Energy Performance of an Air Handling Unit with a Cross-Flow Heat Exchanger," Energies, MDPI, vol. 14(6), pages 1-16, March.
    4. Liu, Xiaochen & Zhang, Tao & Liu, Xiaohua & Li, Lingshan & Lin, Lin & Jiang, Yi, 2021. "Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration," Energy, Elsevier, vol. 215(PB).
    5. Zheng, Xiaofeng & Cooper, Edward & Gillott, Mark & Wood, Christopher, 2020. "A practical review of alternatives to the steady pressurisation method for determining building airtightness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Ewa Zender-Świercz & Marek Telejko & Beata Galiszewska & Mariola Starzomska, 2022. "Assessment of Thermal Comfort in Rooms Equipped with a Decentralised Façade Ventilation Unit," Energies, MDPI, vol. 15(19), pages 1-16, September.
    7. Nicolas Carbonare & Hannes Fugmann & Nasir Asadov & Thibault Pflug & Lena Schnabel & Constanze Bongs, 2020. "Simulation and Measurement of Energetic Performance in Decentralized Regenerative Ventilation Systems," Energies, MDPI, vol. 13(22), pages 1-25, November.
    8. Aldona Skotnicka-Siepsiak, 2021. "An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers," Energies, MDPI, vol. 15(1), pages 1-19, December.
    9. Lu, Xing & O'Neill, Zheng & Li, Yanfei & Niu, Fuxin, 2020. "A novel simulation-based framework for sensor error impact analysis in smart building systems: A case study for a demand-controlled ventilation system," Applied Energy, Elsevier, vol. 263(C).
    10. Bahareh Kiamanesh & Ali Behravan & Roman Obermaisser, 2022. "Realistic Simulation of Sensor/Actuator Faults for a Dependability Evaluation of Demand-Controlled Ventilation and Heating Systems," Energies, MDPI, vol. 15(8), pages 1-26, April.
    11. Bartosz Radomski & Franciszek Kowalski & Tomasz Mróz, 2022. "The Direct-Contact Gravel, Ground, Air Heat Exchanger—Application in Single-Family Residential Passive Buildings," Energies, MDPI, vol. 15(17), pages 1-13, August.
    12. Li, Yongcai & Long, Tianhe & Bai, Xi & Wang, Linfeng & Li, Wuyan & Liu, Shuli & Lu, Jun & Cheng, Yong & Ye, Kai & Huang, Sheng, 2021. "An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger," Renewable Energy, Elsevier, vol. 175(C), pages 486-500.
    13. Daniel Kalús & Jozef Gašparík & Peter Janík & Matej Kubica & Patrik Šťastný, 2021. "Innovative Building Technology Implemented into Facades with Active Thermal Protection," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    14. Łukasz J. Orman & Grzegorz Majewski & Norbert Radek & Jacek Pietraszek, 2022. "Analysis of Thermal Comfort in Intelligent and Traditional Buildings," Energies, MDPI, vol. 15(18), pages 1-25, September.
    15. Bai, H.Y. & Liu, P. & Justo Alonso, M. & Mathisen, H.M., 2022. "A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Katarzyna Ratajczak & Małgorzata Basińska, 2021. "The Well-Being of Children in Nurseries Does Not Have to Be Expensive: The Real Costs of Maintaining Low Carbon Dioxide Concentrations in Nurseries," Energies, MDPI, vol. 14(8), pages 1-19, April.
    17. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Wei, Haibin & Yang, Dong & Wang, Jilibo & Du, Jinhui, 2020. "Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate," Applied Energy, Elsevier, vol. 276(C).
    19. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    20. Mahabir Bhandari & Diana Hun & Som Shrestha & Simon Pallin & Melissa Lapsa, 2018. "A Simplified Methodology to Estimate Energy Savings in Commercial Buildings from Improvements in Airtightness," Energies, MDPI, vol. 11(12), pages 1-16, November.
    21. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    22. Diaz de Garayo, S. & Martínez, A. & Astrain, D., 2022. "Optimal combination of an air-to-air thermoelectric heat pump with a heat recovery system to HVAC a passive house dwelling," Applied Energy, Elsevier, vol. 309(C).
    23. Artur Miszczuk & Dariusz Heim, 2020. "Parametric Study of Air Infiltration in Residential Buildings—The Effect of Local Conditions on Energy Demand," Energies, MDPI, vol. 14(1), pages 1-17, December.
    24. Long, Tianhe & Zhao, Ningjing & Li, Wuyan & Wei, Shen & Li, Yongcai & Lu, Jun & Huang, Sheng & Qiao, Zhenyong, 2022. "Natural ventilation performance of solar chimney with and without earth-air heat exchanger during transition seasons," Energy, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beata Piotrowska & Daniel Słyś, 2023. "Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-in-Tube” Heat Exchanger: Case Study of Poland," Resources, MDPI, vol. 12(9), pages 1-17, August.
    2. Paweł Szałański & Piotr Kowalski & Wojciech Cepiński & Piotr Kęskiewicz, 2023. "The Effect of Lowering Indoor Air Temperature on the Reduction in Energy Consumption and CO 2 Emission in Multifamily Buildings in Poland," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    3. Sabina Kordana-Obuch & Mariusz Starzec, 2023. "Experimental Development of the Horizontal Drain Water Heat Recovery Unit," Energies, MDPI, vol. 16(12), pages 1-24, June.
    4. Katarzyna Ratajczak & Łukasz Amanowicz & Katarzyna Pałaszyńska & Filip Pawlak & Joanna Sinacka, 2023. "Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review," Energies, MDPI, vol. 16(17), pages 1-55, August.
    5. Katarzyna Ratajczak & Edward Szczechowiak & Aneta Pobudkowska, 2023. "Energy-Saving Scenarios of an Existing Swimming Pool with the Use of Simple In Situ Measurement," Energies, MDPI, vol. 16(16), pages 1-25, August.
    6. Mariusz Starzec & Sabina Kordana-Obuch & Beata Piotrowska, 2024. "Evaluation of the Suitability of Using Artificial Neural Networks in Assessing the Effectiveness of Greywater Heat Exchangers," Sustainability, MDPI, vol. 16(7), pages 1-26, March.
    7. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    8. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    9. Dawid Czajor & Łukasz Amanowicz, 2024. "Methodology for Modernizing Local Gas-Fired District Heating Systems into a Central District Heating System Using Gas-Fired Cogeneration Engines—A Case Study," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    10. Łukasz Jan Orman & Natalia Siwczuk & Norbert Radek & Stanislav Honus & Jerzy Zbigniew Piotrowski & Luiza Dębska, 2024. "Comparative Analysis of Subjective Indoor Environment Assessment in Actual and Simulated Conditions," Energies, MDPI, vol. 17(3), pages 1-16, January.
    11. Mariusz Starzec & Sabina Kordana-Obuch, 2024. "Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams," Sustainability, MDPI, vol. 16(2), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Yingjun & Yan, Zengfeng & Ni, Pingan & Lei, Fuming & Yao, Shanshan, 2024. "Machine learning-based multi-performance prediction and analysis of Earth-Air Heat Exchanger," Renewable Energy, Elsevier, vol. 227(C).
    2. John Kaiser Calautit & Hassam Nasarullah Chaudhry, 2022. "Sustainable Buildings: Heating, Ventilation, and Air-Conditioning," Energies, MDPI, vol. 15(21), pages 1-5, November.
    3. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    4. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    5. Valdas Paukštys & Gintaris Cinelis & Jūratė Mockienė & Mindaugas Daukšys, 2021. "Airtightness and Heat Energy Loss of Mid-Size Terraced Houses Built of Different Construction Materials," Energies, MDPI, vol. 14(19), pages 1-23, October.
    6. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    7. Beata Galiszewska & Ewa Zender-Świercz, 2023. "Development of a Numerical Simulation Methodology for PCM-Air Heat Exchangers Used in Decentralised Façade Ventilation Units," Energies, MDPI, vol. 16(15), pages 1-15, July.
    8. Wei, Haibin & Yang, Dong & Du, Jinhui & Guo, Xin, 2021. "Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region," Renewable Energy, Elsevier, vol. 167(C), pages 530-541.
    9. Francesco Zaccaro & John Richard Littlewood & Carolyn Hayles, 2021. "An Analysis of Repeating Thermal Bridges from Timber Frame Fraction in Closed Panel Timber Frame Walls: A Case Study from Wales, UK," Energies, MDPI, vol. 14(4), pages 1-17, February.
    10. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    11. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    12. Krzysztof Grygierek & Joanna Ferdyn-Grygierek, 2022. "Design of Ventilation Systems in a Single-Family House in Terms of Heating Demand and Indoor Environment Quality," Energies, MDPI, vol. 15(22), pages 1-18, November.
    13. Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
    14. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    15. Adriana Greco & Edison Gundabattini & Darius Gnanaraj Solomon & Raja Singh Rassiah & Claudia Masselli, 2022. "A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning," Energies, MDPI, vol. 15(15), pages 1-17, July.
    16. Elombo Motoula, Smaël Magloire & Gomat, Landry Jean Pierre & Lin, Jian & M’passi Mabiala, Bernard, 2022. "Continuum approach to evaluate humidity transportation by an Earth to Air Energy Exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Wang, Nan & Ghaeili, Neda & Wang, Julian & Feng, Yanxiao & Zhang, Enhe & Chen, Chenshun, 2023. "Using architectural glazing systems to harness solar thermal potential for energy savings and indoor comfort," Renewable Energy, Elsevier, vol. 219(P1).
    18. Boris Vladimirovich Borisov & Alexander Vitalievich Vyatkin & Geniy Vladimirovich Kuznetsov & Vyacheslav Ivanovich Maksimov & Tatiana Aleksandrovna Nagornova, 2022. "Analysis of the Influence of the Gas Infrared Heater and Equipment Element Relative Positions on Industrial Premises Thermal Conditions," Energies, MDPI, vol. 15(22), pages 1-19, November.
    19. Bai, Yufu & Long, Tianhe & Li, Wuyan & Li, Yongcai & Liu, Shuli & Wang, Zhihao & Lu, Jun & Huang, Sheng, 2022. "Experimental investigation of natural ventilation characteristics of a solar chimney coupled with earth-air heat exchanger (SCEAHE) system in summer and winter," Renewable Energy, Elsevier, vol. 193(C), pages 1001-1018.
    20. Tomc, Urban & Nosan, Simon & Vidrih, Boris & Bogić, Simon & Navickaite, Kristina & Vozel, Katja & Bobič, Miha & Kitanovski, Andrej, 2024. "Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation," Applied Energy, Elsevier, vol. 361(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1853-:d:1067121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.