IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006153.html
   My bibliography  Save this article

Machine learning-based multi-performance prediction and analysis of Earth-Air Heat Exchanger

Author

Listed:
  • Yue, Yingjun
  • Yan, Zengfeng
  • Ni, Pingan
  • Lei, Fuming
  • Yao, Shanshan

Abstract

The Earth-Air Heat Exchanger (EAHE) plays a crucial role in global renewable energy utilization. Despite various EAHE models, a machine learning-based multi-performance prediction model is lacking. This study introduces a framework based on diverse machine learning models for precise prediction and comprehensive analysis of EAHE's multiple performance indicators. Initially, the theoretical EAHE model is established and validated. Six feature variables and four target variables are input to generate a dataset for machine learning. Six machine learning models are then selected for training, optimization, and validation. Subsequently, model interpretation and analysis are conducted using SHapley additive exPlanations and Partial dependence plots. Results indicate the optimized-extreme gradient boosting model performs the best, with a determination coefficient of 0.98, root mean squared error of 22.98, and mean absolute error of 8.88, identified as the top multi-performance prediction model for EAHE. Notably, pipe diameter, air velocity, and ground type significantly influence EAHE performance. Complex correlations and mutual exclusions exist among target variables, with a strong negative correlation (−0.59) between the coefficient of performance and payback time, highlighting the challenge of simultaneous improvement. This study presents a valuable framework for predicting and analyzing EAHE performance, crucial for promoting its widespread application and enhancing renewable energy utilization.

Suggested Citation

  • Yue, Yingjun & Yan, Zengfeng & Ni, Pingan & Lei, Fuming & Yao, Shanshan, 2024. "Machine learning-based multi-performance prediction and analysis of Earth-Air Heat Exchanger," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006153
    DOI: 10.1016/j.renene.2024.120550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.