IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip2p2676-2687.html
   My bibliography  Save this article

Impact of soil moisture on the long-term energy performance of an earth-air heat exchanger system

Author

Listed:
  • Lin, Jian
  • Nowamooz, Hossein
  • Braymand, Sandrine
  • Wolff, Patrice
  • Fond, Christophe

Abstract

The soil moisture contents affect significantly the soil thermal properties and consequently the thermal efficiency of shallow geothermal systems. This effect becomes more complex to be evaluated for an Earth-Air Heat Exchanger (EAHE) because of its non-stable energy performance due to a large fluctuation of the temperature of air. In this study, the impact of soil moisture content and soil thermal properties has been investigated on the long-term energy performance of an instrumented EAHE site. First, a full-scale experimental EAHE site in University of Strasbourg as well as its measured data are presented. The thermal properties of different soil layers present in the site were experimentally and theoretically characterized with different soil moisture contents. Based on these results, an analytical solution was proposed to simulate the soil temperature of the field and the output air temperature of the EAHE. A computer program based on this analytical solution was developed to assess the performance of the system for a period of three years. The numerical calculation was validated for an average saturation condition by comparing simulation results with measured data. Different soil saturation conditions were also used in the numerical simulation to consider the effect of soil moisture on the system performance. The results show that if the turbulent flow of the circulating air is fully developed, the difference of the exchanged energy could reach more than 40%.

Suggested Citation

  • Lin, Jian & Nowamooz, Hossein & Braymand, Sandrine & Wolff, Patrice & Fond, Christophe, 2020. "Impact of soil moisture on the long-term energy performance of an earth-air heat exchanger system," Renewable Energy, Elsevier, vol. 147(P2), pages 2676-2687.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2676-2687
    DOI: 10.1016/j.renene.2018.06.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gan, Guohui, 2017. "Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings," Renewable Energy, Elsevier, vol. 103(C), pages 361-371.
    2. Gan, Guohui, 2015. "Simulation of dynamic interactions of the earth–air heat exchanger with soil and atmosphere for preheating of ventilation air," Applied Energy, Elsevier, vol. 158(C), pages 118-132.
    3. Nowamooz, Hossein & Nikoosokhan, Saeid & Lin, Jian & Chazallon, Cyrille, 2015. "Finite difference modeling of heat distribution in multilayer soils with time-spatial hydrothermal properties," Renewable Energy, Elsevier, vol. 76(C), pages 7-15.
    4. Bisoniya, Trilok Singh & Kumar, Anil & Baredar, Prashant, 2013. "Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 238-246.
    5. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "The Energy Performances of a Ground-to-Air Heat Exchanger: A Comparison Among Köppen Climatic Areas," Energies, MDPI, vol. 13(11), pages 1-25, June.
    3. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    4. Shi, Yu & Cui, Qiliang & Song, Xianzhi & Xu, Fuqiang & Song, Guofeng, 2022. "Study on thermal performances of a horizontal ground heat exchanger geothermal system with different configurations and arrangements," Renewable Energy, Elsevier, vol. 193(C), pages 448-463.
    5. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    6. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    7. Wei, Haibin & Yang, Dong & Du, Jinhui & Guo, Xin, 2021. "Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region," Renewable Energy, Elsevier, vol. 167(C), pages 530-541.
    8. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).
    2. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    4. Amanowicz, Łukasz & Wojtkowiak, Janusz, 2020. "Approximated flow characteristics of multi-pipe earth-to-air heat exchangers for thermal analysis under variable airflow conditions," Renewable Energy, Elsevier, vol. 158(C), pages 585-597.
    5. Kappler, Genyr & Dias, João Batista & Haeberle, Fernanda & Wander, Paulo Roberto & Moraes, Carlos Alberto Mendes & Modolo, Regina Célia Espinosa, 2019. "Study of an earth-to-water heat exchange system which relies on underground water tanks," Renewable Energy, Elsevier, vol. 133(C), pages 1236-1246.
    6. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    7. Tang, Fujiao & Nowamooz, Hossein, 2018. "Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region," Renewable Energy, Elsevier, vol. 128(PA), pages 210-222.
    8. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    9. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    10. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    11. Benhammou, Mohammed & Draoui, Belkacem, 2015. "Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 348-355.
    12. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    13. Tang, Fujiao & Nowamooz, Hossein, 2020. "Outlet temperatures of a slinky-type Horizontal Ground Heat Exchanger with the atmosphere-soil interaction," Renewable Energy, Elsevier, vol. 146(C), pages 705-718.
    14. Sławomir Rabczak & Paweł Kut, 2020. "Analysis of Yearly Effectiveness of a Diaphragm Ground Heat Exchanger Supported by an Ultraviolet Sterilamp," Energies, MDPI, vol. 13(11), pages 1-7, June.
    15. Yusof, T.M. & Ibrahim, H. & Azmi, W.H. & Rejab, M.R.M., 2018. "The thermal characteristics and performance of a ground heat exchanger for tropical climates," Renewable Energy, Elsevier, vol. 121(C), pages 528-538.
    16. Agrawal, Kamal Kumar & Misra, Rohit & Yadav, Tejpal & Agrawal, Ghanshyam Das & Jamuwa, Doraj Kamal, 2018. "Experimental study to investigate the effect of water impregnation on thermal performance of earth air tunnel heat exchanger for summer cooling in hot and arid climate," Renewable Energy, Elsevier, vol. 120(C), pages 255-265.
    17. Liu, Zhengxuan & Yu, Zhun (Jerry) & Yang, Tingting & Roccamena, Letizia & Sun, Pengcheng & Li, Shuisheng & Zhang, Guoqiang & El Mankibi, Mohamed, 2019. "Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system," Energy, Elsevier, vol. 172(C), pages 220-231.
    18. Cuny, Mathias & Lin, Jian & Siroux, Monica & Fond, Christophe, 2020. "Influence of rainfall events on the energy performance of an earth-air heat exchanger embedded in a multilayered soil," Renewable Energy, Elsevier, vol. 147(P2), pages 2664-2675.
    19. Niu, Fuxin & Yu, Yuebin & Yu, Daihong & Li, Haorong, 2015. "Heat and mass transfer performance analysis and cooling capacity prediction of earth to air heat exchanger," Applied Energy, Elsevier, vol. 137(C), pages 211-221.
    20. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2676-2687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.