IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6110-d895375.html
   My bibliography  Save this article

The Direct-Contact Gravel, Ground, Air Heat Exchanger—Application in Single-Family Residential Passive Buildings

Author

Listed:
  • Bartosz Radomski

    (Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Science, Wojska Polskiego 28, 60-637 Poznań, Poland)

  • Franciszek Kowalski

    (Faculty of Environmental Engineering and Energy Poznań, University of Technology, Berdychowo 4, 60-965 Poznań, Poland)

  • Tomasz Mróz

    (Faculty of Environmental Engineering and Energy Poznań, University of Technology, Berdychowo 4, 60-965 Poznań, Poland)

Abstract

This paper presents proposals for using the direct-contact gravel, ground, air heat exchanger in single-family residential buildings with a passive house standard, according to the Passive House Institute (PHI). The methodology of their application consists of using heat and cold from the ground at an insignificant depth (about 1.5–4.0 m below the ground level for the central European climate) through an aggregate that is buried in the ground. This solution of simple installations is used for preheating and cooling fresh air drawn into the building through a mechanical ventilation system with heat recovery. In more complex applications it can be integrated with the source of heat and cold in passive buildings to create complete heating, cooling, and ventilation systems. In both cases, the air flowing through the exchanger is cooled and dried in summer, heated and humidified in winter, and filtered from pollen and bacteria all year. Direct contact of the deposit with the surrounding native soil facilitates rapid regeneration of the bed temperature. This article presents several proposals for integration with systems ensuring climatic comfort in a passive building, as exemplary applications. The paper presents preliminary estimates of energy (savings of up to 70% of electrical energy consumed), economic (SPBT = 3.65 years), and environmental (69.5% reduction in CO 2 emissions) benefits related to implementing this solution in various configurations of technological systems for buildings in Poland. The calculations were carried out for the city of Poznań, taking into account the hourly intervals and using the author’s code written in MS Excel. The analysis of the operation of the direct-contact gravel, ground, air heat exchanger (GGAHE) system is based on a theoretical heat and mass exchange model. The integrated solutions of technical systems presented in this article provide an interesting alternative to traditional heating, cooling, and ventilation systems.

Suggested Citation

  • Bartosz Radomski & Franciszek Kowalski & Tomasz Mróz, 2022. "The Direct-Contact Gravel, Ground, Air Heat Exchanger—Application in Single-Family Residential Passive Buildings," Energies, MDPI, vol. 15(17), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6110-:d:895375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sławomir Rabczak & Paweł Kut, 2020. "Analysis of Yearly Effectiveness of a Diaphragm Ground Heat Exchanger Supported by an Ultraviolet Sterilamp," Energies, MDPI, vol. 13(11), pages 1-7, June.
    2. Woong June Chung & Sang Hoon Park, 2021. "Utilization of Thermally Activated Building System with Horizontal Ground Heat Exchanger Considering the Weather Conditions," Energies, MDPI, vol. 14(23), pages 1-14, November.
    3. Piotr Michalak, 2022. "Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building," Energies, MDPI, vol. 15(5), pages 1-23, March.
    4. Krystian Leski & Przemysław Luty & Monika Gwadera & Barbara Larwa, 2021. "Numerical Analysis of Minimum Ground Temperature for Heat Extraction in Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 14(17), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    2. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    3. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    4. Rodrigo Aparecido Jordan & Rodrigo Couto Santos & Ricardo Lordelo Freitas & Anamari Viegas de Araújo Motomiya & Luciano Oliveira Geisenhoff & Arthur Carniato Sanches & Hélio Ávalo & Marcio Mesquita & , 2023. "Thermal Properties and Temporal Dynamics of Red Latosol (Oxisol) in Sustainable Agriculture and Environmental Conservation," Resources, MDPI, vol. 12(9), pages 1-16, September.
    5. Piotr Michalak, 2021. "Annual Energy Performance of an Air Handling Unit with a Cross-Flow Heat Exchanger," Energies, MDPI, vol. 14(6), pages 1-16, March.
    6. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Jose María Fernandez-Rodriguez & Angélica Lozano-Lunar & Antonio Rodero, 2022. "The Study of Soil Temperature Distribution for Very Low-Temperature Geothermal Energy Applications in Selected Locations of Temperate and Subtropical Climate," Energies, MDPI, vol. 15(9), pages 1-19, May.
    7. Piotr Michalak, 2022. "Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building," Energies, MDPI, vol. 15(5), pages 1-23, March.
    8. María M. Villar-Ramos & Iván Hernández-Pérez & Karla M. Aguilar-Castro & Ivett Zavala-Guillén & Edgar V. Macias-Melo & Irving Hernández-López & Juan Serrano-Arellano, 2022. "A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings," Energies, MDPI, vol. 15(17), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6110-:d:895375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.