IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6179-d897628.html
   My bibliography  Save this article

A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings

Author

Listed:
  • María M. Villar-Ramos

    (Doctorado en Ciencias en Ingeniería, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco (DAIA-UJAT), Carretera Cunduacán-Jalpa de Méndez km. 1, Cunduacán 86690, Tabasco, Mexico)

  • Iván Hernández-Pérez

    (División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco (DAIA-UJAT), Carretera Cunduacán-Jalpa de Méndez km. 1, Cunduacán 86690, Tabasco, Mexico)

  • Karla M. Aguilar-Castro

    (División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco (DAIA-UJAT), Carretera Cunduacán-Jalpa de Méndez km. 1, Cunduacán 86690, Tabasco, Mexico)

  • Ivett Zavala-Guillén

    (Centro de Investigación Científica y de Educación Superior de Ensenada CICESE, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico)

  • Edgar V. Macias-Melo

    (División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco (DAIA-UJAT), Carretera Cunduacán-Jalpa de Méndez km. 1, Cunduacán 86690, Tabasco, Mexico)

  • Irving Hernández-López

    (Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora (UNISON), Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico)

  • Juan Serrano-Arellano

    (División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Pachuca, Carretera Mexico-Pachuca km. 87.5, Colonia Venta Prieta, Pachuca de Soto 42080, Hidalgo, Mexico)

Abstract

Among the alternatives for improving the thermal comfort conditions inside buildings are the thermally activated building systems (TABS). They are embedded in different building components to improve the indoor air temperature. In this work, a review and analysis of the state of the art of TABS was carried out to identify their potential to improve thermal comfort conditions and provide energy savings. Furthermore, this study presents the gaps identified in the literature so that researchers can develop future studies on TABS. The articles found were classified and analyzed in four sections, considering their implementation in roofs, walls, floors, and the whole envelope. In addition, aspects related to the configuration of the TABS and the fluid (speed, temperature, and mass flow rate) were analyzed. It was found that when TABS are implemented in roofs, walls, and floors, a reduction in the indoor temperature of a building of up to 14.4 °C can be obtained. Within the limitations of the TABS, the complexity and costs of their implementation compared to the use of air conditioning systems are reported. However, the TABS can provide energy savings of up to 50%.

Suggested Citation

  • María M. Villar-Ramos & Iván Hernández-Pérez & Karla M. Aguilar-Castro & Ivett Zavala-Guillén & Edgar V. Macias-Melo & Irving Hernández-López & Juan Serrano-Arellano, 2022. "A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings," Energies, MDPI, vol. 15(17), pages 1-31, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6179-:d:897628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Jing & Liu, Jiying & Zhou, Shiyu & Kim, Moon Keun & Song, Shoujie, 2022. "Experimental study on control strategies of radiant floor cooling system with direct-ground cooling source and displacement ventilation system: A case study in an office building," Energy, Elsevier, vol. 239(PD).
    2. Joe, Jaewan & Karava, Panagiota, 2019. "A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings," Applied Energy, Elsevier, vol. 245(C), pages 65-77.
    3. Rafael Suárez & Rocío Escandón & Ramón López-Pérez & Ángel Luis León-Rodríguez & Tillmann Klein & Sacha Silvester, 2018. "Impact of Climate Change: Environmental Assessment of Passive Solutions in a Single-Family Home in Southern Spain," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    4. Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
    5. A. P. Haghighi & M. Maerefat, 2015. "Design guideline for application of earth-to-air heat exchanger coupled with solar chimney as a natural heating system," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(3), pages 294-304.
    6. Romaní, Joaquim & Cabeza, Luisa F. & Pérez, Gabriel & Pisello, Anna Laura & de Gracia, Alvaro, 2018. "Experimental testing of cooling internal loads with a radiant wall," Renewable Energy, Elsevier, vol. 116(PA), pages 1-8.
    7. Krzaczek, M. & Florczuk, J. & Tejchman, J., 2019. "Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings," Applied Energy, Elsevier, vol. 254(C).
    8. Daniel Kalús & Jozef Gašparík & Peter Janík & Matej Kubica & Patrik Šťastný, 2021. "Innovative Building Technology Implemented into Facades with Active Thermal Protection," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    9. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2013. "Modeling of TABS-based thermally manageable buildings in Simulink," Applied Energy, Elsevier, vol. 104(C), pages 791-800.
    10. Kishor T. Zingre & Kiran Kumar D. E. V. S. & Man Pun Wan, 2020. "Analysing the Effect of Substrate Properties on Building Envelope Thermal Performance in Various Climates," Energies, MDPI, vol. 13(19), pages 1-8, October.
    11. Piotr Michalak, 2021. "Selected Aspects of Indoor Climate in a Passive Office Building with a Thermally Activated Building System: A Case Study from Poland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    12. Yu-Jin Hwang & Jae-Weon Jeong, 2021. "Energy Saving Potential of Radiant Floor Heating Assisted by an Air Source Heat Pump in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-14, March.
    13. Zhang, Dongliang & Cai, Ning & Cui, Xiaobo & Xia, Xueying & Shi, Jianzhong & Huang, Xiaoqing, 2019. "Experimental investigation on model predictive control of radiant floor cooling combined with underfloor ventilation system," Energy, Elsevier, vol. 176(C), pages 23-33.
    14. Woong June Chung & Sang Hoon Park & Myoung Souk Yeo & Kwang Woo Kim, 2017. "Control of Thermally Activated Building System Considering Zone Load Characteristics," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
    15. Gwerder, M. & Lehmann, B. & Tödtli, J. & Dorer, V. & Renggli, F., 2008. "Control of thermally-activated building systems (TABS)," Applied Energy, Elsevier, vol. 85(7), pages 565-581, July.
    16. Haksung Lee & Akihito Ozaki & Younhee Choi & Muhammad Iqbal, 2021. "Performance Improvement Plan of Air Circulation-Type Solar Heat-Storage System Using Ventilated Cavity of Roof," Energies, MDPI, vol. 14(6), pages 1-13, March.
    17. Romaní, Joaquim & Cabeza, Luisa F. & de Gracia, Alvaro, 2018. "Development and experimental validation of a transient 2D numeric model for radiant walls," Renewable Energy, Elsevier, vol. 115(C), pages 859-870.
    18. Woong June Chung & Sang Hoon Park, 2021. "Utilization of Thermally Activated Building System with Horizontal Ground Heat Exchanger Considering the Weather Conditions," Energies, MDPI, vol. 14(23), pages 1-14, November.
    19. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 677-685.
    20. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
    21. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Wang, Lin-Shu & Ma, Peizheng, 2016. "The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings," Applied Energy, Elsevier, vol. 162(C), pages 183-196.
    3. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Joanna Sinacka & Edward Szczechowiak, 2021. "An Experimental Study of a Thermally Activated Ceiling Containing Phase Change Material for Different Cooling Load Profiles," Energies, MDPI, vol. 14(21), pages 1-16, November.
    5. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude," Applied Energy, Elsevier, vol. 146(C), pages 84-91.
    6. Romaní, Joaquim & Cabeza, Luisa F. & de Gracia, Alvaro, 2018. "Development and experimental validation of a transient 2D numeric model for radiant walls," Renewable Energy, Elsevier, vol. 115(C), pages 859-870.
    7. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    8. Schmelas, Martin & Feldmann, Thomas & Bollin, Elmar, 2017. "Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study," Applied Energy, Elsevier, vol. 199(C), pages 294-309.
    9. Romaní, Joaquim & Belusko, Martin & Alemu, Alemu & Cabeza, Luisa F. & de Gracia, Alvaro & Bruno, Frank, 2018. "Optimization of deterministic controls for a cooling radiant wall coupled to a PV array," Applied Energy, Elsevier, vol. 229(C), pages 1103-1110.
    10. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 677-685.
    11. Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
    12. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2014. "Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower," Applied Energy, Elsevier, vol. 127(C), pages 172-181.
    13. Brown, Sarah & Beausoleil-Morrison, Ian, 2023. "Long-term implementation of a model predictive controller for a hydronic floor heating and cooling system in a highly glazed house in Canada," Applied Energy, Elsevier, vol. 349(C).
    14. Piselli, Cristina & Prabhakar, Mohit & de Gracia, Alvaro & Saffari, Mohammad & Pisello, Anna Laura & Cabeza, Luisa F., 2020. "Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration," Renewable Energy, Elsevier, vol. 162(C), pages 171-181.
    15. Ren, Jing & Liu, Jiying & Zhou, Shiyu & Kim, Moon Keun & Song, Shoujie, 2022. "Experimental study on control strategies of radiant floor cooling system with direct-ground cooling source and displacement ventilation system: A case study in an office building," Energy, Elsevier, vol. 239(PD).
    16. Yang, Yang & Chen, Sarula & Zhang, Jiqiang, 2023. "A comprehensive study on transient thermal behaviors and performances of the modular pipe-embedded energy wall system under intermittent operation conditions," Energy, Elsevier, vol. 280(C).
    17. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    18. Seif Khiati & Rafik Belarbi & Ammar Yahia, 2023. "Sustainable Buildings: A Choice, or a Must for Our Future?," Energies, MDPI, vol. 16(6), pages 1-5, March.
    19. Hiroki Ikeda & Yasushi Ooi & Takashi Nakaya, 2021. "Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House," Energies, MDPI, vol. 14(21), pages 1-29, October.
    20. Hou, Guolian & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2020. "Fuzzy modeling and fast model predictive control of gas turbine system," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6179-:d:897628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.