IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp486-500.html
   My bibliography  Save this article

An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger

Author

Listed:
  • Li, Yongcai
  • Long, Tianhe
  • Bai, Xi
  • Wang, Linfeng
  • Li, Wuyan
  • Liu, Shuli
  • Lu, Jun
  • Cheng, Yong
  • Ye, Kai
  • Huang, Sheng

Abstract

Earth–air heat exchangers (EAHEs) and solar chimneys (SCs) can be used to improve indoor air quality and thermal comfort, and reduce the energy consumption of buildings. The ventilation and cooling performance of an SC integrated with an EAHE system (SCEAHE) on a typical sunny summer day is investigated herein, using a full-scale experimental test rig. The SC provides the driving force required to draw airflow through the EAHE pipe, and the air is cooled by the surrounding soil. The experimental results indicate that the buoyant driving force induced by the SC can drive the EAHE during the daytime. The maximum airflow rate achieved during the day was 252 m3/h. Furthermore, an airflow rate of 50–70 m3/h was achieved when the solar radiation intensity was low or zero due to the building thermal mass. Therefore, the combined effects of the building thermal mass and the SC provided 24 h of natural ventilation. The maximum reduction in the temperature of the outlet air compared to that of the inlet air was 12.5 °C. The maximum total cooling capacity, sensible cooling capacity, and latent cooling capacity of the EAHE were approximately 1398.0 W, 892.0 W, and 611.7 W, respectively.

Suggested Citation

  • Li, Yongcai & Long, Tianhe & Bai, Xi & Wang, Linfeng & Li, Wuyan & Liu, Shuli & Lu, Jun & Cheng, Yong & Ye, Kai & Huang, Sheng, 2021. "An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger," Renewable Energy, Elsevier, vol. 175(C), pages 486-500.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:486-500
    DOI: 10.1016/j.renene.2021.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Yuebin & Li, Haorong & Niu, Fuxin & Yu, Daihong, 2014. "Investigation of a coupled geothermal cooling system with earth tube and solar chimney," Applied Energy, Elsevier, vol. 114(C), pages 209-217.
    2. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    3. AboulNaga, M.M & Abdrabboh, S.N, 2000. "Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney," Renewable Energy, Elsevier, vol. 19(1), pages 47-54.
    4. Li, Haorong & Yu, Yuebin & Niu, Fuxin & Shafik, Michel & Chen, Bing, 2014. "Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 62(C), pages 468-477.
    5. Maerefat, M. & Haghighi, A.P., 2010. "Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 35(10), pages 2316-2324.
    6. Liu, Shuli & Li, Yongcai, 2015. "An experimental study on the thermal performance of a solar chimney without and with PCM," Renewable Energy, Elsevier, vol. 81(C), pages 338-346.
    7. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2006. "The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate," Renewable Energy, Elsevier, vol. 31(7), pages 987-1010.
    8. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    9. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Pakari & Saud Ghani, 2021. "Energy Savings Resulting from Using a Near-Surface Earth-to-Air Heat Exchanger for Precooling in Hot Desert Climates," Energies, MDPI, vol. 14(23), pages 1-14, December.
    2. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    3. Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.
    4. Singh, Ajeet Pratap & Singh, Jaydeep & Kumar, Amit & Singh, O.P., 2023. "Vertical limit reduction of chimney in solar power plant," Renewable Energy, Elsevier, vol. 217(C).
    5. Bai, Yufu & Long, Tianhe & Li, Wuyan & Li, Yongcai & Liu, Shuli & Wang, Zhihao & Lu, Jun & Huang, Sheng, 2022. "Experimental investigation of natural ventilation characteristics of a solar chimney coupled with earth-air heat exchanger (SCEAHE) system in summer and winter," Renewable Energy, Elsevier, vol. 193(C), pages 1001-1018.
    6. Long, Tianhe & Zhao, Ningjing & Li, Wuyan & Wei, Shen & Li, Yongcai & Lu, Jun & Huang, Sheng & Qiao, Zhenyong, 2022. "Natural ventilation performance of solar chimney with and without earth-air heat exchanger during transition seasons," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    3. Ahmad Taghdisi & Yousof Ghanbari & Mohammad Eskandari, 2020. "Energy-Conservation Considerations Through a Novel Integration of Sunspace and Solar Chimney in The Terraced Rural Dwellings," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 1-13.
    4. Long, Tianhe & Zhao, Ningjing & Li, Wuyan & Wei, Shen & Li, Yongcai & Lu, Jun & Huang, Sheng & Qiao, Zhenyong, 2022. "Natural ventilation performance of solar chimney with and without earth-air heat exchanger during transition seasons," Energy, Elsevier, vol. 250(C).
    5. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    6. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    8. Elghamry, Rania & Hassan, Hamdy, 2020. "Impact a combination of geothermal and solar energy systems on building ventilation, heating and output power: Experimental study," Renewable Energy, Elsevier, vol. 152(C), pages 1403-1413.
    9. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    10. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    11. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    12. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    13. Mathur, Anuj & Surana, Ankit Kumar & Mathur, Sanjay, 2016. "Numerical investigation of the performance and soil temperature recovery of an EATHE system under intermittent operations," Renewable Energy, Elsevier, vol. 95(C), pages 510-521.
    14. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    15. Lekhal, Mohammed Cherif & Benzaama, Mohammed-Hichem & Kindinis, Andrea & Mokhtari, Abderahmane-Mejedoub & Belarbi, Rafik, 2021. "Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers," Renewable Energy, Elsevier, vol. 163(C), pages 22-40.
    16. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    17. Bai, Yufu & Long, Tianhe & Li, Wuyan & Li, Yongcai & Liu, Shuli & Wang, Zhihao & Lu, Jun & Huang, Sheng, 2022. "Experimental investigation of natural ventilation characteristics of a solar chimney coupled with earth-air heat exchanger (SCEAHE) system in summer and winter," Renewable Energy, Elsevier, vol. 193(C), pages 1001-1018.
    18. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.
    19. Shi, Long, 2019. "Impacts of wind on solar chimney performance in a building," Energy, Elsevier, vol. 185(C), pages 55-67.
    20. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:486-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.