IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5886-d1213593.html
   My bibliography  Save this article

Energy-Saving Scenarios of an Existing Swimming Pool with the Use of Simple In Situ Measurement

Author

Listed:
  • Katarzyna Ratajczak

    (Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland)

  • Edward Szczechowiak

    (Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland)

  • Aneta Pobudkowska

    (Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland)

Abstract

Swimming is a good form of physical activity that keeps swimmers fit and healthy. In countries with cold climates, swimming is allowed only indoors. Since adequate water and air parameters must be ensured in these buildings, they are very energy-consuming. In new buildings, modern solutions can be used, thanks to which technologically advanced energy-saving systems can be used. Unfortunately, in existing buildings, it is not always possible to make technical changes, or they are associated with high financial expenses. In this article, a method of in situ measurement of selected air parameters is proposed, on the basis of which it is possible to suggest scenarios for changes in the control of air technology and parameters in order to achieve energy savings. The easy measurement method was applied in a typical swimming pool building, and energy-saving measurements were taken on the first day to obtain a baseline. Seven scenarios were analyzed that would lead to a reduction in energy consumption without the introduction of new elements into the facility. The main task was to find a solution that ensured adequate thermal comfort in the building. Significant energy savings were achieved in each scenario: 6–47% compared to measured energy consumption. To improve the energy efficiency of swimming pools, especially in the current energy crisis related to the economic and political situation, all methods for reducing the energy demand are desirable. The proposed assessment method will allow for energy-consuming elements and allow for changes in the use of equipment in the swimming pool building. However, the main objective is to maintain the thermal comfort of swimming pool users, as no savings can be achieved at the expense of worsening the feeling of building users.

Suggested Citation

  • Katarzyna Ratajczak & Edward Szczechowiak & Aneta Pobudkowska, 2023. "Energy-Saving Scenarios of an Existing Swimming Pool with the Use of Simple In Situ Measurement," Energies, MDPI, vol. 16(16), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5886-:d:1213593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Ratajczak & Aneta Pobudkowska, 2020. "Pilot Test on Pre-Swim Hygiene as a Factor Limiting Trihalomethane Precursors in Pool Water by Reducing Organic Matter in an Operational Facility," IJERPH, MDPI, vol. 17(20), pages 1-14, October.
    2. Westerlund, L. & Dahl, J., 1994. "Use of an open absorption heat-pump for energy conservation in a public swimming-pool," Applied Energy, Elsevier, vol. 49(3), pages 275-300.
    3. Katarzyna Ratajczak & Edward Szczechowiak, 2020. "The Use of a Heat Pump in a Ventilation Unit as an Economical and Ecological Source of Heat for the Ventilation System of an Indoor Swimming Pool Facility," Energies, MDPI, vol. 13(24), pages 1-22, December.
    4. Chow, T.T. & Bai, Y. & Fong, K.F. & Lin, Z., 2012. "Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating," Applied Energy, Elsevier, vol. 100(C), pages 309-317.
    5. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    6. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    7. Joanna Sinacka & Edward Szczechowiak, 2021. "An Experimental Study of a Thermally Activated Ceiling Containing Phase Change Material for Different Cooling Load Profiles," Energies, MDPI, vol. 14(21), pages 1-16, November.
    8. Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.
    9. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2018. "Energy and Economic Analysis of Energy Savings Measures in a Swimming Pool Centre by Means of Dynamic Simulations," Energies, MDPI, vol. 11(9), pages 1-27, August.
    10. Katsaprakakis, Dimitris Al., 2015. "Comparison of swimming pools alternative passive and active heating systems based on renewable energy sources in Southern Europe," Energy, Elsevier, vol. 81(C), pages 738-753.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Ratajczak & Edward Szczechowiak, 2020. "The Use of a Heat Pump in a Ventilation Unit as an Economical and Ecological Source of Heat for the Ventilation System of an Indoor Swimming Pool Facility," Energies, MDPI, vol. 13(24), pages 1-22, December.
    2. Dimitris A. Katsaprakakis & Nikos Papadakis & Efi Giannopoulou & Yiannis Yiannakoudakis & George Zidianakis & Michalis Kalogerakis & George Katzagiannakis & Eirini Dakanali & George M. Stavrakakis & A, 2023. "Rational Use of Energy in Sports Centres to Achieve Net Zero: The SAVE Project (Part A)," Energies, MDPI, vol. 16(10), pages 1-41, May.
    3. Dimitris Al. Katsaprakakis, 2020. "Computational Simulation and Dimensioning of Solar-Combi Systems for Large-Size Sports Facilities: A Case Study for the Pancretan Stadium, Crete, Greece," Energies, MDPI, vol. 13(9), pages 1-30, May.
    4. Nikolaos Papadakis & Dimitrios Al. Katsaprakakis, 2023. "A Review of Energy Efficiency Interventions in Public Buildings," Energies, MDPI, vol. 16(17), pages 1-34, August.
    5. Dimitris Al. Katsaprakakis & Georgios Zidianakis, 2019. "Optimized Dimensioning and Operation Automation for a Solar-Combi System for Indoor Space Heating. A Case Study for a School Building in Crete," Energies, MDPI, vol. 12(1), pages 1-21, January.
    6. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2018. "Energy and Economic Analysis of Energy Savings Measures in a Swimming Pool Centre by Means of Dynamic Simulations," Energies, MDPI, vol. 11(9), pages 1-27, August.
    7. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    8. Katarzyna Ratajczak & Łukasz Amanowicz & Katarzyna Pałaszyńska & Filip Pawlak & Joanna Sinacka, 2023. "Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review," Energies, MDPI, vol. 16(17), pages 1-55, August.
    9. John Kaiser Calautit & Hassam Nasarullah Chaudhry, 2022. "Sustainable Buildings: Heating, Ventilation, and Air-Conditioning," Energies, MDPI, vol. 15(21), pages 1-5, November.
    10. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    11. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    12. Beata Piotrowska & Daniel Słyś, 2023. "Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-in-Tube” Heat Exchanger: Case Study of Poland," Resources, MDPI, vol. 12(9), pages 1-17, August.
    13. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    14. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    15. Dawid Czajor & Łukasz Amanowicz, 2024. "Methodology for Modernizing Local Gas-Fired District Heating Systems into a Central District Heating System Using Gas-Fired Cogeneration Engines—A Case Study," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    16. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    17. Sergio Ignacio Serna-Garcés & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2016. "Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems," Energies, MDPI, vol. 9(4), pages 1-27, March.
    18. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    19. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    20. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5886-:d:1213593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.