IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp221-229.html
   My bibliography  Save this article

Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump

Author

Listed:
  • Zhang, Feng
  • Cai, Jingyong
  • Ji, Jie
  • Han, Kedong
  • Ke, Wei

Abstract

The mutual coupling between different heat sources will reduce the impact of dynamic environmental conditions on the performance of the heat pump. In this paper, a solar-air composite heat source heat pump (SA-CHSHP) is built and tested in outdoor dynamic environment. The experimental prototype can realize heating and refrigeration. The heating performance of the SA-CHSHP system is tested under different weather conditions. In autumn, the highest COPm of the system can reach 4.80 in sunny days, and the lowest COPm is higher than 2.7 in cloudy days. Meanwhile, when the ambient temperature is 5.85 °C–13.99 °C in winter, the COPm can reach 2.87–3.80, and the operation process is stable. In nights, the cooling performance of the composite heat source heat pump is investigated, the refrigeration COPm is approximately 1.7. The SA-CHSHP system effectively uses air sources and solar energy, which can run stably under various working conditions.

Suggested Citation

  • Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:221-229
    DOI: 10.1016/j.renene.2020.07.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qv, Dehu & Ni, Long & Yao, Yang & Hu, Wenju, 2015. "Reliability verification of a solar–air source heat pump system with PCM energy storage in operating strategy transition," Renewable Energy, Elsevier, vol. 84(C), pages 46-55.
    2. Liang, Ruobing & Zhou, Chao & Zhang, Jili & Chen, Jianquan & Riaz, Ahmad, 2020. "Characteristics analysis of the photovoltaic thermal heat pump system on refrigeration mode: An experimental investigation," Renewable Energy, Elsevier, vol. 146(C), pages 2450-2461.
    3. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    4. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    5. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    6. Ozgener, Onder & Hepbasli, Arif, 2007. "A review on the energy and exergy analysis of solar assisted heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 482-496, April.
    7. Zhao, M. & Gu, Z.L. & Kang, W.B. & Liu, X. & Zhang, L.Y. & Jin, L.W. & Zhang, Q.L., 2017. "Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source," Applied Energy, Elsevier, vol. 185(P2), pages 2094-2105.
    8. Wang, Chenguang & Gong, Guangcai & Su, Huan & Wah Yu, Chuck, 2015. "Efficacy of integrated photovoltaics-air source heat pump systems for application in Central-south China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1190-1197.
    9. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    10. Liu, Yin & Ma, Jing & Zhou, Guanghui & Zhang, Chao & Wan, Wenlei, 2016. "Performance of a solar air composite heat source heat pump system," Renewable Energy, Elsevier, vol. 87(P3), pages 1053-1058.
    11. Moreno-Rodriguez, A. & Garcia-Hernando, N. & González-Gil, A. & Izquierdo, M., 2013. "Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating," Energy, Elsevier, vol. 60(C), pages 242-253.
    12. Kong, Xiangqiang & Jiang, Kailin & Dong, Shandong & Li, Ying & Li, Jianbo, 2018. "Control strategy and experimental analysis of a direct-expansion solar-assisted heat pump water heater with R134a," Energy, Elsevier, vol. 145(C), pages 17-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    2. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    3. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    4. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong, 2023. "Numerical exploration and experimental validation of a tri-generation heat pump system in cooling mode," Energy, Elsevier, vol. 273(C).
    5. Wen, Xin & Ji, Jie & Song, Zhiying, 2021. "Performance comparison of two micro-channel heat pipe LFPV/T systems plus thermoelectric generators with and without aerogel glazing," Energy, Elsevier, vol. 229(C).
    6. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong, 2023. "Performance improvement and comparison analysis of the hybrid concentrated dual-source heat pump system regarding proper throttling process," Renewable Energy, Elsevier, vol. 206(C), pages 24-38.
    7. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.
    8. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    9. Cai, Jingyong & Zhou, Haihua & Xu, Lijie & Shi, Zhengrong & Zhang, Tao & Ji, Jie, 2022. "Energy and exergy analysis of a novel solar-air composite source multi-functional heat pump," Renewable Energy, Elsevier, vol. 185(C), pages 32-46.
    10. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Experimental and numerical investigation on a photovoltaic heat pump with two condensers: A micro-channel heat pipe/thermoelectric generator condenser and a submerged coil condenser," Energy, Elsevier, vol. 242(C).
    11. Wei, Haibin & Yang, Dong & Du, Jinhui & Guo, Xin, 2021. "Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region," Renewable Energy, Elsevier, vol. 167(C), pages 530-541.
    12. Zhang, Tianhu & Wang, Fuxi & Gao, Yi & Liu, Yuanjun & Guo, Qiang & Zhao, Qingxin, 2023. "Optimization of a solar-air source heat pump system in the high-cold and high-altitude area of China," Energy, Elsevier, vol. 268(C).
    13. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Research on the multifunction concentrated solar-air heat pump system," Renewable Energy, Elsevier, vol. 198(C), pages 679-694.
    14. Sun, Xiaoyu & Wang, Zhichao & Li, Xiaofeng & Xu, Zhaowei & Yang, Qiang & Yang, Yingxia, 2021. "Seasonal heating performance prediction of air-to-water heat pumps based on short-term dynamic monitoring," Renewable Energy, Elsevier, vol. 180(C), pages 829-837.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yi & Zhao, Xudong & Han, Zhonghe & Li, Jing & Badiei, Ali & Akhlaghi, Yousef Golizadeh & Liu, Zhijian, 2021. "Scientific and technological progress and future perspectives of the solar assisted heat pump (SAHP) system," Energy, Elsevier, vol. 229(C).
    2. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    3. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    4. Wang, Xinru & Xia, Liang & Bales, Chris & Zhang, Xingxing & Copertaro, Benedetta & Pan, Song & Wu, Jinshun, 2020. "A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources," Renewable Energy, Elsevier, vol. 146(C), pages 2472-2487.
    5. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    6. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    7. Cai, Jingyong & Li, Zhouhang & Ji, Jie & Zhou, Fan, 2019. "Performance analysis of a novel air source hybrid solar assisted heat pump," Renewable Energy, Elsevier, vol. 139(C), pages 1133-1145.
    8. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    9. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    10. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    11. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    12. Hao, Wengang & Zhang, Han & Liu, Shuonan & Mi, Baoqi & Lai, Yanhua, 2021. "Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system," Renewable Energy, Elsevier, vol. 165(P1), pages 77-87.
    13. Yi Zhang & Guanmin Zhang & Aiqun Zhang & Yinhan Jin & Ruirui Ru & Maocheng Tian, 2018. "Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review," Energies, MDPI, vol. 11(10), pages 1-36, October.
    14. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    15. Del Amo, Alejandro & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A. & Cañada, Marta, 2019. "Performance analysis and experimental validation of a solar-assisted heat pump fed by photovoltaic-thermal collectors," Energy, Elsevier, vol. 169(C), pages 1214-1223.
    16. Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
    17. Basalike, Pie & Peng, Wang & Zhang, Jili, 2022. "Numerical study on the performance of photovoltaic thermal unit condenser with water/nanofluids as fluids medium," Renewable Energy, Elsevier, vol. 197(C), pages 606-616.
    18. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    19. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    20. Shi, Guo-Hua & Aye, Lu & Li, Dan & Du, Xian-Jun, 2019. "Recent advances in direct expansion solar assisted heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 349-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:221-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.